
	

Continue

179759016660	6104198.7555556	11671749.243902	35977833556	101581318020	19125887.173333	121473727298	1751119.9148936	7552130.372093	37102657.410256	98020784736	68039175584	1392273.9883721	63969351346	56581508808	76470025104	30522786100	45105975070	12714667.840426	3424387180	16354749.032967
9951104251	36140174028	142674905.75	17133230962	45633817.882353	12670527015	63188739.16	16580074.542169	116392433976	44137543695	10052899161

https://lazav.co.za/XSRYdR1H?utm_term=thinking+in+react+pdf+editor+tutorial+free+pdf

Thinking	in	react	pdf	editor	tutorial	free	pdf

Yeah,	and	this	is	from	the	route	that	we	have	up	here,	as	I	told	you	about	before,	we	have	the	ID	up	here	in	the	routes,	we	can	get	that	one	from	the	router.So	we	have	to	import	something	up	here.So	we	import	curly	brackets,	it's	a	hook	that's	called	use	params.From	react	dash	router,	dash	dome.So	with	this	hook,	we	can	grab	that	params	that	we
have	in	the	URL.So	we'll	do	that	before	we	destructure	out	the	state	and	everything	here	from	our	use	movie	fetch	hook	to	make	sure	that	we	have	the	ID	to	send	into	that	hook,	the	const,	and	then	we	destructure	out	the	movie	ID	equals	and	we	call	the	use	params.That's	everything	you	have	to	do.And	this	one	is	named	movie	ID	because	we	named	it
that	in	the	app.js	file.We	call	it	movie	ID.If	we	call	it	something	else	here,	we	have	to	distract	it	with	that	name.But	this	will	give	us	that	ID	that	we	have	up	in	the	road	here	in	our	application.So	hopefully	this	will	work	when	we	tried	to	console	log	out	the	movie,	and	this	is	actually	the	state	but	I	renamed	it	to	movie.So	that's	why	I	can	console	log	it
out	as	movie.Save	it.So	we	try	it	out,	click	a	movie	and	nothing	shows	up.And	I	think	I	know	why	we	go	inside	the	use	movie	fetch	hook,	we	also	need	to	actually	invoke	this	function	here.So	we	do	that	at	the	bottom	of	our	use	effect	hook.Fetch	movie.Did	I	name	it	fetch	data,	we	can	rename	it	to	fetch	movie	instead,	like	this.And	make	sure	to	invoke	it
at	the	bottom	of	the	hook.Save	it	go	back	to	the	application.And	now	you	can	see	that	we	have	the	data	here.So	we	have	all	the	actors.And	we	also	have	the	directors	that	were	filtered	out	here.So	that's	great.All	the	data	that	we	need	is	here.I	want	to	show	you	one	more	thing	here.And	that	is	if	we	were	to	remove	this,	that	movie	function	outside	of
the	use	effect	like	this,	it	tells	us	here	that	we	need	to	specify	the	fetch	movie,	and	that's	okay,	because	it's	outside	the	use	effect.Now,	we	do	that.And	then	it	gives	us	another	warning	here.And	this	is	because	this	function	two	will	get	recreated	on	each	render.And	this	use	effect	will	think	that	it's	a	new	function	that	gets	on	each	render,	and	it	will
create	an	infinity	loop.So	that's	no	good.So	if	we	want	to	have	it	placed	outside	of	the	use	effect,	we	need	to	wrap	it	in	something	that's	called	a	use	fallback	hook,	we	can	import	that	one	up	here.And	then	we	wrap	this	one	in	the	use	callback	hook	like	this.And	then	at	the	end	of	it,	we	need	to	have	a	dependency	array.In	this	case,	it's	empty.And	then	it
gives	us	another	warning.And	then	it	says	that	it	needs	to	specify	the	movie	ID	because	the	movie	ID	is	something	that's	outside	of	this	one	here.We	also	need	to	specify	this	one,	we	specified	a	movie	Id	like	this.And	now	it	won't	complain.And	this	one	will	not	get	recreated	unless	the	movie	ID	changes.So	this	will	stop	the	Infinity	loop.And	we	can	see
that	it	won't	go	into	an	infinity	loop	here.If	you	want	to	do	it	like	this,	instead,	you	can	do	that.In	this	case,	we	don't	need	to	call	this	function	from	anywhere	outside	of	the	use	effect.So	I'm	just	going	to	revert	it	back	and	not	use	the	use	callback	hook.So	I'm	going	to	have	it	inside	of	my	use	effect	instead.Like	we	had	it	before.Save	it	make	sure	that	it
works	again,	and	it	does.So	that's	how	you	use	the	use	callback	hook	to	stop	infinity	loops	in	react.But	in	this	case,	we	won't	need	it.So	it's	better	to	have	this	function	directly	in	the	use	effect	hook	instead.Alright,	let's	move	on	and	create	some	nice	components	for	our	movie	page.Alright,	we're	going	to	create	this	nice	little	breadcrumb	navigation	up
here	on	each	individual	movie.So	go	back	inside	of	the	code	editor	inside	the	components	folder,	create	a	new	folder	that's	called	Brad	Trump.capital	B,	capital	C	and	you	create	another	file	inside	of	that	one.Let's	call	index.js.And	you	create	a	file,	let's	call	the	breadcrumbed	dot	styles,	dot	j	s	a	bit	repetitive	now,	but	it's	good	because	that	means	that
we	probably	be	learning	something	here.So	inside	the	breadcrumb	dot	styles	file,	we're	going	to	scaffold	out	to	style	components.But	first	we	import	styled	from	styled	components,	then	we	export	the	class,	that's	called	wrapper.And	is	equals	a	style.do,	double	backticks.And	then	we	export	const,	that's	called	content.It	equals	A	styled	dot	div,	all
formatted	and	save	it.Go	back	inside	of	the	index.js	file	in	the	breadcrumb	folder,	first,	we	import	react	from	react,	we're	going	to	import	the	link	from	react	dash	router	dash	DOM.Because	we	want	to	be	able	to	link	back	to	the	home	page,	then	we	have	our	styles,	import	wrapper,	and	content	from	dot	forward	slash	breadcrumb	dot	styles,	then	we
create	our	component	cost	breadcrumbed.equals,	then	we're	going	to	destructure	to	prop	is	called	movie	title.And	we	create	an	arrow	function	and	we	can	make	an	implicit	returns	we	have	parenthesis	we're	going	to	have	the	rapper	num,	we	have	the	content.Now	we're	going	to	use	the	link	from	the	React	router	DOM	is	going	to	link	to	and	where	do
we	think	it's	going	to	link?	For	me,	I	think	it's	the	font	medium.So	variable	dash	dash,	font	medAnd	the	color	is	going	to	be	for	the	variable	is	going	to	be	white.The	padding	dash,	right	is	going	to	be	10	pixels.And	then	we're	also	going	to	have	a	media	query	for	this	one.So	add	media	screen	and	Max	dash	with	is	going	to	be	762	pixels.And	I'm	just
going	to	change	the	font	size	here	font	size.And	I	think	yeah,	I	forgot	all	of	them	now.Yeah,	font	small.That	will	do,	I	think.So	from	the	variable,	font	small.Alright,	save	it	and	go	back	to	our	application.And	there	you	have	it,	and	it	should	change	in	font	size.Yeah.So	it's	working,	and	the	link	is	working.Great.There's	some	padding	there.I	have	it	there
also,	okay.Yeah,	it	doesn't	matter,	you	can	adjust	that	one	if	you	want	to	do	that.Alright,	so	that's	the	styles	for	the	breadcrumbs.So	let's	move	on	and	create	our	movie	info	component.We're	going	to	create	the	movie	info	component.So	we	looked	at	an	individual	movie,	or	we	can	look	at	anyone.It's	this	component	here,	it's	kind	of	a	hero
component.So	I	think	this	will	be	the	largest	individual	component	in	this	application.So	we're	going	to	do	a	little	bit	of	JSX.And	also,	it's	going	to	be	a	little	bit	of	styling	for	this	one.So	we	better	get	started	with	this	move	back	to	your	code	editor.And	inside	a	components	folder,	create	a	new	folder	that	we	call	movie	info,	capital	M	capital	I.And	then
we'll	create	a	new	file	index	dot	j,	s,	and	then	another	file	inside	of	that	folder,	that's	called	movie	info,	dot	styles	dot	j	s.And	we	scaffold	out	the	style.So	import,	styled	from	styled	components.And	for	this	one,	we're	actually	also	going	to	import	some	other	stuff	here,	because	we	need	the	image	base	URL	and	the	backdrop	size	from	the	config.And	I'm
going	to	talk	about	that	when	we	style	this	component,	but	we	import	them	now.So	import,	capital	letters,	image,	underscore,	base,	underscore	URL,	and	also	the	back	drop	underscore	size.And	we	grab	them	from	dot	dot	forward	slash	dot	dot	forward	slash	config,	right.And	we	scaffold	out	three	components	here.So	export	const,	rapper,	equals	style,
Dave,	double	backticks,	export	const.content,	hopefully	beginning	to	see	my	pattern	on	styling.In	this	one,	I	usually	have	a	wrapper	and	the	content.This	one	is	also	going	to	be	styled	div.And	then	we're	going	to	have	a	third	one.That's	going	to	be	called	export	const	text.And	it's	also	going	to	equal	the	style	of	div	that	will	backticks.Like	so	save	the
file,	go	back	to	the	index.js	file	in	the	movie	info	folder.Now	we	can	start	building	this	massive	component.Now	it's	not	really	that	massive,	I	think	it's	about	50	rows	or	something.All	right,	import	react	from	react,	and	then	we're	going	to	have	a	component,	so	we're	actually	going	to	use	the	thumb	component	for	this	one.So	import	thumb	from	dot	dot
forward	slash,	thumb.Alright,	so	that's	the	component	that	we	need.We	also	need	something	from	the	config.So	import	the	image	underscore	base	underscore	URL,	and	also	the	poster.underscore	size.From	dot	dot	forward	slash	dot	dot	forward	slash	double	dot	dot	forward	slash	config.Then	we	have	an	image.And	it's	going	to	be	the	fallback	image	as
we	always	use,	so	import	no	image	from	dot	dot	forward	slash	dot	dot	forward	slash,	again,	images.No	underscore	image	dot	jpg.All	right.And	then	we	have	our	styles.The	import	curly	brackets,	wrapper,	content,	and	text	from	dot	forward	slash,	move	info	dot	styles.Right,	that's	our	imports.Then	we're	going	to	create	the	component	itself.So	we	have
a	const.Movie.info	equals	anger	is	a	structure	of	a	prop.That's	called	movie	we're	going	to	give	it	the	movie	data	as	a	prop,	an	arrow	function	and	we	can	make	an	implicit	return	on	this	one.First,	I	actually	going	to	export	default	its	export	default	movie	info,	like	so,	then	inside	of	here,	we're	first	gonna	have	a	wrapper.And	this	one	is	actually	going	to
take	in	a	prop.That's	going	to	be	the	backdrop	image.So	we	have	a	prop	that	called	backdrop.And	from	the	movie,	we	have	a	property	that's	called	backdropped.underscore	path.And	we	close	the	component	and	inside	the	wrapper,	we	have	our	content,	like	so	then	we're	going	to	use	a	thumb	component	again.And	this	is	actually	great,	because	you
can	see	here	how	you	can	reuse	components	in	react.And	this	is	kind	of	the	fundamentals	of	working	with	components,	you	can	reuse	them	in	your	application.So	you	should	always	code	with	that	in	mind,	if	you	want	to	reuse	it	somewhere,	you	should	make	the	components	flexible.So	you	don't	need	to	create	similar	components,	it's	better	to	use	one
component	that	you	can	modify	with	props	instead.So	we	have	our	thumb.And	on	that	one,	if	you	remember,	we	have	an	image	prop.So	we're	going	to	give	it	the	image.And	this	one,	just	as	before,	I'm	going	to	check	if	it's	as	a	movie	poster	path,	I	use	a	ternary	operator	for	this	one,	I	have	a	question	mark.And	also	note,	I	created	curly	brackets	here,
because	this	is	a	JavaScript	expression.And	as	I	like	to	do	it	with	template	literals,	I'm	going	to	have	double	backticks.And	I	have	$1	sign	and	then	I'm	going	to	grab	the	image	base	URL,	then	I	have	another	dollar	sign	and	curly	brackets,	I'm	going	to	grab	the	poster	size.And	then	lastly,	I'm	going	to	have	a	new	dollar	sign	and	curly	brackets.And	I'm
going	to	grab	the	movie	dot	poster	underscore	path.So	that	is	if	we	have	a	poster	pass.Otherwise,	we	have	a	colon	and	we	show	the	no	image	that	we	imported.That's	the	image	prop.Then	we	have	the	clickable	prop.And	in	this	case,	we're	going	to	give	it	false	because	we	don't	want	this	one	to	be	clickable,	we	set	an	OLT	of	movies	thumb.And	then	we
can	close	this	component,	do	some	more	formatting,	save	it	and	we	can	actually	go	back	to	our	move	it	up	JS	component	and	import	this	one	here	where	we	import	the	components,	import	movie	info,	from	dot	forward	slash,	movie	info.And	then	below	here	below	the	breadcrumb	or	we	can	use	a	move	in	for	component	like	this,	we	give	it	a	drop	of
movie.And	it's	going	to	be	the	complete	movie	stayed.If	you	want,	you	can	specify	it	even	more	in	detail	if	you	don't	want	to	give	it	the	complete	state	but	I	think	for	simplicity's	sake,	I	give	it	the	complete	state	here	to	work	with,	say	the	file	go	back	to	our	browser.And	you	can	see	that	we	have	our	image	here.And	we	can	click	it	and	that's	great.So
yes,	yes,	it	works	with	some	other	stuff	here.Yeah,	it	does.That's	great.Move	back	inside	of	the	index.js	file	in	the	movie	info	folder.So	we	created	our	thumb	and	just	below	the	thumb,	we're	going	to	have	our	text.So	we	use	the	text	style	component.And	inside	of	that	one,	we're	going	to	have	an	h1	tag.And	I'm	going	to	grab	the	movie	dot	title	for	that
one.Then	we	have	an	age	three	tag.And	it's	going	to	say	plot	or	something	else	if	you	want	that.Next	we	have	a	p	tag.And	we're	going	to	grab	the	movie	dot	overview.And	that's	the	short	text	about	the	movie.And	inside	of	here,	I	actually	going	to	create	some	regular	classes	with	class	name,	because	I	want	to	show	you	that	also,	you	could	create	stock
components.Also,	if	you	want	to	do	that	for	these	that	I'm	going	to	create	now.But	I'm	going	to	create	a	regular	div	with	a	class	name	or	rating	dash	directors,	I'm	going	to	have	both	the	rating	and	the	directors	in	this	one.And	inside	of	this	one,	I'm	going	to	nest	another	div.And	inside	that	div,	I'm	going	to	nest	an	H	three	tag	that's	going	to	say	rating,
like	that.And	then	I	have	another	div	with	a	class	name.That's	going	to	be	that's	going	to	be	score.And	then	I'm	going	to	grab	from	the	movie	dot	vote	underscore	average.And	that	will	give	us	the	score	from	the	API.Let's	do	rating.Then	below	this	wrapping	div	are	going	to	create	another	wrapping	div	and	this	one	going	to	have	a	class	name	of
director	and	inside	of	that	one	are	going	to	have	another	age	retag	and	it's	going	to	say	director	and	I'm	going	to	do	a	little	trickier	because	if	there's	more	than	one	director,	we	won't	To	say	directors,	so	I	create	curly	brackets.And	inside	here	I	oops,	don't	know	why	did	like	that,	okay.And	inside	the	curly	brackets,	I	can	have	a	JavaScript
expression.And	I	can	check	if	movie	dot	directors	dot	length.If	that	one	is	greater	than	one,	I'm	going	to	add	in	an	S,	like	this.Otherwise,	I	just	return	an	empty	string.If	there's	only	one,	it	will	say	director,	otherwise	it	will	say	directors.then	below	that	header,	we	create	another	pair	of	curly	brackets,	because	now	we	have	to	loop	through	the	directors
and	display	them	in	our	dome.So	from	our	movie,	we	have	this	property	that's	called	directors,	we're	going	to	map	over	that	one.And	we	have	a	director,	we	can	make	an	implicit	return	in	this	arrow	function.So	we	have	a	p	tag	with	a	key,	it's	always	important	to	include	a	key	as	you	know,	otherwise,	React	will	complain	react	uses	the	key	internally	to
diff	stuff,	so	it	knows	what	to	change	in	the	DOM.Okay,	so	the	key	is	going	to	be	from	from	the	director,	we're	going	to	grab	something	that's	called	credit	underscore	ID.And	this	will	be	unique,	right,	and	inside	the	p	tag,	we	have	another	pair	of	curly	brackets,	and	I'm	going	to	grab	the	director,	dot	name,	auto	formatted.So	that's	the	directors	and
this	should	hopefully	be	it.So	we	can	save	it,	go	back	to	the	application	and	see	what	we	got,	we	probably	won't	see	anything	because	this	text	is	white,	I	guess.Or	if	we	check	here	below,	we	can	see	that	we	are	the	last	it	is	in	white	now.So	you	can	see	it,	the	rating	is	5.1.And	we	have	a	directory	also.So	we	know	that	it's	working,	we	just	have	to	give
it	some	styling	to	make	it	look	nice.And	that's	exactly	what	we're	going	to	do	in	the	next	video.We	have	finished	a	logic	for	a	movie	and	four	components.So	it's	time	to	style	this	one.Go	back	inside	of	the	code	editor.And	inside	the	movie	info	dot	styles	dot	j	s,	we	start	off	with	a	wrapper.For	this	one,	we	set	the	background	and	this	one	is	going	to	be
based	on	a	prop	that	we're	selling.That	is	called	backdrop.So	I'm	going	to	create	a	ternary	operator	here	because	if	we	don't	have	a	backdrop,	then	we're	going	to	set	the	background	to	be	just	black.And	if	you	remember	when	we	grab	a	prop	in	a	style	component,	we	can	do	that	with	$1	sign	and	curly	brackets.Because	this	is	a	template	literal.So
that's	how	you	create	a	JavaScript	expression.And	then	I'm	going	to	destructure	out	from	the	props.So	I	have	a	parenthesis	and	curly	brackets	again.So	I'm	going	to	destructor	out	the	backdrop	like	this.And	then	I	create	an	inline	arrow	function.And	then	I'm	going	to	create	a	ternary	operator	here	to	check	if	the	backdrop	exists.So	backdrop,	then	I
have	a	question	mark.And	then	I	do	another	template	literal.Inside	of	here,	we	have	the	URL.And	I	have	a	regular	single	quote,	I	don't	actually	know	if	we	need	this	one.But	I'm	gonna	leave	it	in	just	to	be	sure.And	then	dollar	sign	curly	brackets.And	I	grabbed	the	image	base	URL.And	then	I	have	again,	dollar	sign	and	curly	brackets,	and	I	grabbed	the
backdrop	size,	and	I	have	a	third	dollar	sign	and	curly	brackets.And	I'm	going	to	grab	the	backdrop,	that's	the	one	that	we	send	into	this	component.So	that	is	if	we	have	a	backdrop	otherwise,	to	the	right	of	the	colon.I'm	going	to	show	a	black	color.And	then	we	have	a	semi	colon	to	MDS	with	just	after	the	last	curly	bracket.This	can	be	a	little	bit
nested	here	and	hard	to	read	actually	see	if	it	does	something	if	I	yeah,	it's	all	formatted	on	one	row.Okay,	yeah,	that's	fine.I'm	going	to	remove	this	sidebar.So	you	can	see	this	is	maybe	easier	to	read.So	I	check	if	the	backdrop	is	true.And	then	to	the	right	to	the	question	mark	are	going	to	parse	in	the	image	base	URL	and	the	backdrop	size,	and	then
we'll	have	the	backdrop	that	we're	sending	to	this	star	component.If	this	exists,	we're	going	to	show	that	one	as	a	background.Otherwise,	we	set	the	background	to	be	black.Right,	then	we're	going	to	set	the	background	dash	size.It's	going	to	be	cover	and	then	we	have	the	background	dash	position.That	one	is	going	to	be	center.And	I'm	going	to	set	a
little	bit	of	padding	on	this	one.So	40	pixels	and	20	pixels.And	I	have	an	animation	also	because	I	want	this	one	to	fade	off	just	as	the	other	ones.animate	movie	info,	camel	casing,	and	one	second	and	then	I	create	The	keyframes	so	add	keyframes	like	this,	and	then	we	go	from.Or	if	you	want	to	use	0%,	instead,	we	set	the	opacity	to	zero,	and	then	two,
or	100%.If	you	use	that	instead,	Opacity	is	going	to	be	one,	save	it	and	see	what	we	got.Okay?	And	hopefully	this	should	be	it.Go	back	to	the	application.Yeah,	we	have	one	more	thing	to	do,	because	I	don't	want	to	show	this	rate	slider	when	we're	not	logged	in.So	we	can	do	that	also.So	just	here,	when	we	have	the	rating,	outside	of	the	wrapping	dem
are	going	to	create	a	ternary	operator,	I'm	going	to	check	if	you	sir.Then	I'll	double	ampersand,	and	I	move	my	M	curly	bracket	down	here	or	to	format	it.And	it	will	also	auto	generate	this	parenthesis.So	if	the	user	exists,	if	we're	logged	in,	we're	going	to	show	the	rating.Otherwise,	we	don't	show	anything.Save	the	file	go	back	to	our	application,	you
can	see	that	we're	not	showing	the	rate	slider	now	we	have	to	log	in.So	we	click	the	Login	button,	and	I	log	in.And	now	we're	logged	in,	we're	going	to	go	to	movie	here.Now	you	can	see	that	we	see	the	rating	slider.So	I	don't	actually	know	if	this	movie	is	any	good,	but	I'm	going	to	give	it	a	rating	or	eight.And	I	click	the	red	button.And	here	you	can
see	in	the	console	that	we	got	a	success	of	true	and	status	code	one,	a	status	message	success.And	if	we	click	rate	again,	you	can	see	that	we	get	another	message	because	it	says	that	the	item	record	was	updated	successfully.So	you	can	update	your	rating	score.If	you	want	to	do	that.There's	also	a	resource	in	the	endpoint	if	you	want	to	remove	the
score	also.So	there	are	some	neat	stuff	that	you	can	do	with	the	Movie	Database	API.And	I	hope	this	inspired	you	to	actually	build	more	stuff	into	this	application,	because	now	you	have	a	good	foundation.And	for	example,	the	next	step	you	can	do	is	to	create	a	logout	button	for	the	user.And	the	way	I	would	do	it	in	this	case	is	that	I	can	just	wipe	out
the	global	context	the	state	here	and	remove	the	user	from	the	global	state.And	that	will	log	out	the	user	we	don't	have	to	do	anything	else	with	the	Movie	Database	API	or	something	like	that.Alright,	that's	it	for	this	course.I	hope	you	enjoy	this.I	sure	enjoy	this.This	is	the	third	iteration	of	the	course.So	this	is	the	third	time	that	I	actually	update	it	and
re	recorded	from	scratch.And	if	you	want	free	tutorials,	you	can	always	visit	my	YouTube	channel,	search	for	vaman	Fox,	or	you	can	go	to	vevo	in	fact.com	if	you	want	more	courses	from	me.	Yeah,	it	should	be	used	home	fetch,	of	course,	not	use	movie	fetch.A	change	this	one	to	use	home	fetch.us	home	fetch	homefacts	like	this,	save	the	file,	go	back	to
the	browser.And	you	can	see	that	we	have	our	state	here.And	that's	great.You	can	see	there's	a	lot	of	renders.And	a	lot	of	people	will	say,	oh,	crazy.There's	too	many	renders,	this	is	a	performance	issue.But	it's	actually	not.So	this	is	totally	fine.But	you	can	see	that	it	we	have	our	initial	state	here	first,	and	it's	zero,	everything	is	zeroed	out.And	then	we
get	the	data	here.And	we	have	all	the	movies	inside	here.So	that's	sweet.And	I	promise	you	it	won't	be	any	performance	issue	in	this	application	because	of	these	renders.So	this	is	how	you	create	a	custom	hook	in	react.Always	name	your	custom	hooks	with	use	before	you	have	your	name.That's	really	important,	you	should	always	name	them	like
this.In	the	next	video,	we're	going	to	start	creating	the	components	for	the	homepage	and	we're	going	to	start	with	the	hero	image.In	this	video,	we're	going	to	create	this	hero	image	here	in	the	application.So	we're	going	to	grab	a	background	image	and	all	the	text	here	from	the	Movie	Database	API.Actually,	we	have	already	grabbed	them.So	we're
going	to	use	that	data	inside	of	the	hero	image	component.So	let's	go	back	to	our	code	editor.And	inside	the	components	folder,	create	a	new	folder	that	we	call	hero	image,	capital	H	capital	I,	and	inside	the	hero	image	folder	and	create	a	new	file	that	we	call	index	dot	j,	s,	and	also	file	that	we	call	hero	image	dot	styles.dot	j	s,	just	as	before,	are	just
going	to	scaffold	out	the	style	so	we	can	use	them	in	the	component,	but	I'm	going	to	create	the	actual	styles	in	the	next	video	instead.So	if	you	already	have	this	file	here	and	choose	to	not	create	the	styling	for	this	course,	you	already	have	this	file	here	and	don't	need	to	do	this.So	in	the	hero	image.styles.js	import	style	from	style	components	like
this,	then	I'm	going	to	export	a	cost	that	are	called	rapper	is	going	to	equal	from	style	dot	div,	I'm	going	to	create	a	div	I	have	backticks	like	this,	then	I'm	going	to	export	const	content	equals	styled.do,	exactly	the	same	and	double	backticks.And	I'm	going	to	have	one	that's	called	export	const	text	equals	styled	dot	div	double	backticks.And	that's
it.That's	three	Olam,	save	this	file	and	go	inside	the	index.js	file,	we	import	react	from	react,	then	we're	going	to	import	the	styles.So	I	marked	it	with	styles,	import,	wrapper,	calm	content,	and	text	from	dot	forward	slash	hero	image	styles.Right?	This	should	be	it,	save	it	back	to	the	application.If	it	works,	yeah,	there	you	have	it.It	works	on	mobile
devices	also.That's	super	great.That's	the	movie	infobar.And	now	we	just	have	the	grid	with	the	actors	left	to	do	and	then	we've	finished	the	basic	stuff	with	this	application.Alright,	let's	create	the	last	component	for	our	application.And	that's	going	to	be	the	actor.Inside	a	components	folder,	create	a	new	folder	that	the	name	actor.And	then	you	create
a	new	file	inside	of	that	folder	that	we're	going	to	call	index	dot	j	s.And	we	created	another	file	that's	called	actor	dot	styles,	dot	j	s.And	inside	the	actor	dot	styles	dot	j	s,	we	import	styled	Rome	style	components.And	then	we	export	the	cost	that	we	call	wrapper	equals	style	dot	div,	double	backticks.And	then	we're	going	to	have	another	one,	export
const	is	going	to	be	called	image	capital	I,	of	course,	equals	style	dot	IMG,	we're	going	to	style	this	image	tag,	save	it,	go	back	to	the	index.js	file,	and	we	can	create	our	actual	component.So	import	react	from	react.Then	we	have	our	styles.And	we	import	the	wrapper	and	the	image,	ROM	dot	forward	slash	actor	styles.Then	we	create	the	component
const	actor	equals	parenthesis	and	another	a	destructor.Out	inside	of	the	curly	brackets,	the	name,	the	character	and	the	image	URL.We	have	an	arrow	function,	we	make	an	implicit	return	we	have	the	wrapper,	then	we're	going	to	display	our	image,	we	have	the	source	or	image	URL	ot	is	going	to	equal	actor	dash	thumb.And	then	we	close	it.Now	we
have	an	H	three	tag,	that's	going	to	display	the	names	of	curly	brackets	and	name	that's	the	prop	name.And	then	we	have	a	p	tag	and	we	have	curly	brackets	and	we're	going	to	grab	the	character	that's	going	to	be	the	name	of	the	character.Right,	then	we	just	need	to	export	default	actor	and	or	component	is	good	to	go.So	go	back	to	the	movie.js	file
imported	up	here,	import	actor	from	dot	forward	slash	actor,	right,	and	then	move	down	to	our	JSX.I'm	just	below	the	movie	info	bar.We're	going	to	show	these	actors	and	we're	going	to	show	them	inside	of	our	grid.So	we	first	display	a	grid.The	header	for	this	one	is	going	to	be	actors.If	you	remember,	we	have	this	prop	that's	called	header	where	we
can	set	the	title	of	our	grid.And	inside	a	grid,	we're	going	to	map	through	all	the	actors.So	we	have	curly	brackets,	and	from	the	movie	dot	actors,	we're	going	to	map	through	each	actor.So	we	have	an	actor	and	an	inline	arrow	function,	parenthesis,	we	make	an	implicit	return.Then	we	display	an	actor,	it	needs	to	have	a	key,	as	always,	when	we	met
through	stuff	in	our	JSX	in	react,	so	the	key	is	going	to	be	from	the	actor	dot	credit	underscore	ID.That's	the	key.Then	we	have	a	prop	that's	called	name.So	we're	going	to	give	it	the	actor	dot	name.And	a	scroll	up	a	little	bit	here.And	then	we	have	a	prop	that's	called	character.And	for	that	one,	we	give	it	the	actor	dot	character.Like	so	now	we	have	an
image	URL.And	it's	going	to	equal	and	this	one	is	also	going	to	be	that	ternary	operator	that	we	use	before	because	we	want	to	display	a	fallback	image	if	we	don't	have	that	one.So	we	check	if	we	have	an	actor	dot	profile	underscore	path.And	then	we	have	a	question	mark	and	we're	going	to	return	our	nice	little	URL.So	I	have	double	backticks	dollar
sign	and	I	have	curly	brackets	and	I	grab	the	image	base	URL	and	then	directly	after	that	I	have	another	dollar	sign	curly	brackets	and	I	grabbed	my	poster	size.And	then	I	have	a	third	dollar	sign	and	curly	brackets.And	I'm	gonna	grab	actor	dot	profile	underscore	path.Be	very	careful	with	the	spelling	here.It's	very	easy	to	get	a	typo	when	you	do	stuff
like	this.Now	we	have	our	colon	and	if	we	don't	have	a	profile	path,	we	give	it	a	no	image.And	then	below	here	we	need	to	close	that	component	also	do	some	auto	formatting.So	this	should	be	my	friend	We	have	hopefully	finished	the	base	of	the	application.And	then	I'm	going	to	teach	you	some	other	stuff	that's	useful	in	react.So	this	should	be	it,	I
hope,	save	it	and	go	back	to	the	browser,	you	can	see	that	we	have	the	accuracy,	but	it	doesn't	look	good,	because	we	haven't	styled	them	yet.But	at	least	it's	working.And	these	are	in	white,	there,	you	can	see	the	character	they	play	in	the	movie.So	we're	going	to	style	them	in	the	next	video.And	then	we	have	this	nice	actors	grid.Alright,	let's	give
those	actors	some	styling.So	inside	our	code	in	the	actor.styles.js	file,	we	have	two	style	components.So	let's	start	with	wrapper	as	usual.I'm	going	to	set	the	color	from	our	variables,	we	have	white,	I	set	the	background.And	also	from	our	variables,	we	have	the	dark	gray,	I	set	the	border	dash	radius	to	20	pixels,	padding	is	going	to	be	five	pixels,	and
the	text	align	is	going	to	be	Sunder	then	I'm	going	to	have	an	age	three	tag	nested	here,	I	set	the	Morgan	to	10	pixels	000.on	that	one,	and	then	we	have	the	p	tag	is	going	to	have	a	margin	of	five	pixels	and	zero.All	right,	so	that's	everything	for	the	wrapper,	then	we	have	the	image,	just	a	few	lines	of	code	left,	we	display	it	as	a	block,	the	width	is
going	to	be	100%.The	height	is	going	to	be	200	pixels.And	albeit	dash	fifth	is	going	to	be	cover	and	the	border	radius	is	going	to	be	15	pixels.And	this	should	be	it,	save	it	go	back	to	the	application.And	hopefully	you	have	a	nice	grid.Yeah,	almost.There's	something	wrong	here	with	a	background.Yeah,	and	that's	because	I	have	a	typo,	it	should	say
border	radius,	like	that	Not	radius.Save	it	go	back.And	there	you	have	it.Let's	make	sure	that	it	works	on	all	devices.And	it	does.Sweet,	sweet,	sweet.And	that	concludes	the	basic	stuff	for	this	application.In	the	next	video,	we're	going	to	talk	about	prop	types	and	how	you	can	type	check	the	props	that	you	send	in	to	your	components.I'm	going	to	talk
about	something	that's	called	prop	types.And	prop	types	is	something	you	can	use	on	your	components	in	react	to	type	check	the	props	that	you	send	into	your	component.So	you	have	this	special	property	on	your	components	you	create.That's	called	prop	types.I'm	on	the	official	react	page.Now,	reg	deus.org.And	just	as	to	say	here,	React	has	some
built	in	type	checking	abilities.I'm	going	to	show	you	how	to	convert	this	application	into	TypeScript	later	in	the	chapter.So	if	you	don't	use	TypeScript,	you	should	use	prop	types	instead.That	way,	you	can	at	least	type	check	your	props	that	you	send	in	it.So	they	tell	you	here	to	run	type	checking	on	the	props	for	a	component,	you	can	assign	a	special
prop	types	property.And	I'll	give	you	an	example	here.So	they	import	the	prop	types	that's	from	the	library	that	we	installed	earlier	prop	types	up	here.Then	they	have	the	component	name,	and	then	assign	and	then	assigned	to	this	property	that's	called	prop	types.So	this	one	has	a	lowercase	letter	to	start	with.And	this	one	has	an	uppercase	letter.So
this	one	is	the	actual	property	on	the	component	itself.And	this	one	is	the	one	that	you	import	from	the	library	that's	called	prop	types.So	it	can	be	a	little	bit	confusing,	but	we're	going	to	practice	this	in	our	components.So	hopefully,	you'll	get	a	grasp	of	it	quite	quickly,	you	have	this	special	property	on	your	component	that's	called	prop	types.And
that	is	an	object.And	here	you	can	specify	your	props.And	from	the	prop	types	that	we	import	up	here,	you	have	different	types	you	can	check	against.So	this	one	will	get	a	warning	if	the	prop	isn't	a	string	that	this	component	receives.And	if	we	scroll	down	here,	they	show	you	everything	you	can	do	here.And	we	are	actually	just	going	to	do	those
simple	checks	if	it's	a	string,	a	number	or	a	Boolean.But	you	can	also	check	against	an	object,	for	example,	you	can	set	all	the	properties	in	an	object,	and	then	you	use	something	that's	called	shape.And	then	you	specify	your	orbit	shape	inside	of	that	one.So	you	can	do	some	more	advanced	prototype	validation	here,	instead	of	just	check	that	it's	an
object.You	can	check	all	the	properties	on	the	object	by	using	the	dot	shape.So	I	highly	suggest	that	you	read	this	one	on	rxjs.org.If	you	want	to	know	more	about	prop	types.I	think	a	lot	of	people	now	are	starting	to	use	TypeScript	with	react.And	with	TypeScript.We	don't	have	to	do	this.We	have	it	for	free	in	TypeScript.So	prop	types	is	only	If	you
don't	use	TypeScript,	and	that's	why	I	won't	go	into	super	detail	about	it	either,	because	I	think	TypeScript	is	actually	great	to	use	in	combination	with	react.But	you	should	know	at	least	that	you	can	do	some	deeper	prop	type	validation	by	using	some	of	these	syntaxes.Here,	you	can	also	check	an	object	with	with	warnings	on	extra	properties.And	you
can	do	an	exact	check	here,	if	you	want	to	do	that.And	you	can	also	check	if	you	send	in	an	array	that	should	have	only	numbers,	you	can	check	that	also.So	that	you	make	sure	that	the	array	doesn't	contain	strings,	for	example.Or	then	you	can	do	the	same	with	an	object	here.So	there's	some	really	useful	stuff	inside	of	here	that	you	can	learn	if	you
want	to	get	more	advanced	into	prop	types.But	we	are	going	to	use	the	most	simple	use	cases.And	we're	going	to	check	for	strings,	numbers,	and	Boolean	and	also	for	functions,	I	think.So	in	the	next	video,	we're	going	to	learn	about	the	most	simple	forms	on	how	we	can	use	prop	types	on	your	components.Okay,	let's	start	doing	some	prop	type
validation.So	we're	going	to	do	that	with	the	prop	types	library	that	we	installed	in	the	beginning	of	this	course.So	let's	begin	at	the	top	here	with	the	actor	in	the	components	folder,	and	then	we're	going	to	move	away	down	and	go	through	all	our	components.So	in	the	actor,	make	sure	that	the	import	prop	types,	capital	P,	capital	T,	from	Prop,	dash
types,	right.And	then	just	below	the	component	at	the	bottom	here,	just	above	the	export	default,	we	have	our	actor	component,	so	we're	going	to	use	the	special	property	that's	called	prop	types	on	that	one.So	actor	dot	prop	types,	and	this	one	is	lowercase	p,	not	capital	T,	as	it	is	up	here.Be	very	careful	here	is	can	be	quite	confusing,	actually.So	prop
types,	is	going	to	equal	and	we	have	an	object.And	then	we	can	specify	our	different	props	that	we	have	here.So	we	have	the	name,	Prop,	and	the	name	prop.We	know	that	this	one	is	a	string.So	from	the	prop	types	that	we	import	that	capital	P	prop	types	with	capital	P	prop	types,	we	have	something	that's	called	string,	so	we're	going	to	check	against
if	it's	a	string.All	right,	then	we	have	the	character.And	from	prop	types	with	capital	P,	we're	also	going	to	check	if	that	one	is	a	string,	and	we	have	the	third	one,	image	URL,	Rob	types,	dot	string,	all	of	these	are	going	to	be	strings.So	we	say	this	one,	go	back	to	our	application.And	we	can	see	here,	we're	going	to	need	to	be	on	an	individual	movie
here.So	we	have	this	movie	here,	nothing	shows	up	here.But	if	we	go	inside,	or	I'm	just	going	to	close	this	here.So	if	we	go	inside	our	move	it	up	JS	component,	we	have	our	actor	here.And	we	know	that	this	name,	for	example,	is	a	string.So	if	we	change	this	one	to	a	number,	for	example,	10,	save	it,	go	back	to	our	application,	you	can	see	that	we
instantly	get	a	warning	here	fail	prop	type,	invalid	prop	name	of	type	number	supplied	to	actor	expected	string.So	this	is	a	very	handy	way	when	you	develop	your	application	to	know	that	you're	sending	the	correct	props	to	your	components.And	this	is	only	available	in	development	mode,	it	will	not	be	in	production.So	it's	kind	of	a	tool	when	you
develop	this	application	to	actually	validate	your	props	that	you're	sending	to	your	components.So	we're	going	to	change	this	back	now,	and	hopefully	get	an	idea	on	how	it	works.Now,	that	was	our	actor.Then	we	have	our	bread	crumb.So	just	as	before	we	import	prop	types,	capital	P	capital	T	from	prop	dash	types.And	below	the	component	we	have
the	component	name,	breadcrumb	dot	prop	types.With	a	lowercase	p,	it's	going	to	equal	an	object.And	for	this	one,	we	have	a	prop.That's	called	movie	title.And	from	the	prop	types	with	a	capital	P,	we're	going	to	check	if	it's	a	string,	right.So	that's	the	bread	crumb.Then	we	have	the	button.For	that	one,	we	have	two	props.So	we	import	prop	types,
capital	P,	from	prop	dash	types.And	below	the	component.We	have	the	bottom	dot	prop	types.lowercase	p	equals	an	object.We	have	our	text	prop	that	one	We're	going	to	check	prop	types,	capital	P	here	and	a	little	bit	repetitive	here	that	we	check	if	it's	a	string.And	then	we	have	a	coma,	and	we	have	a	callback.And	from	the	prop	types,	capital	P,	this
one	is	going	to	be	a	function.So	we	have	that	one	also	on	the	prop	types	object.funk,	we	can	check	if	it's	a	function,	save	it,	go	back	to	our	application	and	check	Yeah,	it	seems	to	be	right.Let's	have	baronne.Then	we	have	our	grid,	import	prop	types	capital	P	from	prop	dash	types,	below	the	component,	grid	dot	prop	types	lowercase	p,	then	we	have
two	props	for	this	one,	header,	prop	types	dot	string,	we	check	if	it's	a	string.And	we	actually	don't	need	to	check	the	children	because	that	is	a	built	in	Prop,	so	we	don't	need	to	verify	that	one.That's	the	grade	that	we	have	the	header	and	the	header	don't	have	any	props,	we	can	skip	that	one,	we	have	the	hero	image.And	this	one	has	reom	to	import
prop	types	capital	P	from	prop	dash	types.Below	the	component,	type	in	hero	image,	dot	prop	types	lowercase	p,	we	have	our	object.And	we	have	the	image	we	check	against	the	prop	types	with	capital	P	dot	string.All	of	these	are	going	to	be	strings.Also,	we	have	the	title,	prop	types	dot	string.And	we	have	the	text	prop	types.dot	string,	right?	Well,
React	wants	you	to	name	all	your	custom	hooks	with	use	and	then	your	name.That	way	react	knows	that	this	is	a	custom	hook,	you	could	skip	to	use	use.But	you	shouldn't	do	that	you	should	always	name	them	with	use	before	the	name,	always	do	it	like	that.Otherwise,	it	can	give	you	trouble	in	the	future.So	inside	of	this	file,	I'm	going	to	create	a	new
function.I'm	going	to	export	it	also	because	we're	going	to	import	this	one	in	our	home	component	and	use	this	custom	hooked,	export	const	use	home	sets.And	I	create	a	regular	arrow	function	like	this.Alright,	so	that's	our	function,	then	we	go	back	to	our	home	component	inside	of	the	components	folder.And	we're	going	to	grab	all	this	logic	here,	all
the	states,	the	first	move	is	function	and	the	use	effect.We	can	keep	the	console	log	for	now	is	going	to	give	us	an	error	but	that's	okay,	we're	going	to	fix	that	soon.Go	back	to	the	use	home	fetch	custom	hooked	paste	the	logic	in	here	and	it	complains	now	because	we	haven't	imported	this	ones	here.So	we	could	actually	just	copy	them	from	the	home
component	but	just	as	before,	I	want	us	to	type	in	stuff	a	lot	here	because	we	learning	stuff.So	we're	going	to	import	from	the	rack.library,	we're	going	to	need	the	use	state.So	import	curly	brackets,	you	state	coma	use	effect.And	we're	also	going	to	use	the	hook	that's	called	use	ref	laters,	we	can	import	that	one	also.And	we	import	it	from	react.And
you	can	see	the	red,	don't	import	react	in	this	one,	because	we	not	need	the	actual	react	library,	we	just	need	this	stuff	from	that	library.So	that's	why	we	don't	have	any	JSX	or	anything	here.So	that's	why	we	don't	need	to	import	react	itself,	we	also	need	to	import	the	API.And	that	one,	we	can	actually	just	copy	this	one	from	the	home.So	go	back	to
the	home,	cut	this	one	out	here,	the	import	API	like	this,	go	back	to	the	US	home	fetch	hooked	and	paste	it	in	here.And	this	one	should	be	it.All	right,	is	more	of	mining.And	we	only	have	this	function	or	we're	not	actually	returning	something,	we	have	to	return	something	in	our	custom	hook	also.So	go	down	to	the	bottom	of	the	function.And	here
we're	going	to	return	our	state's	for	now,	we're	going	to	return	more	stuff	in	this	one	later,	when	we	create	more	stuff.But	now	we	return	on	object.And	we	have	the	state,	we	have	the	loading	and	error	like	this.And	this	is	also	a	sixth	syntax,	as	we	return	this	object,	this	one	is	automatically	going	to	get	the	property	state	because	it	has	the	same
name.And	all	of	these	ones	has	the	same	name.So	we	don't	have	to	specify	them	explicitly,	it	will	figure	this	out	itself.All	right,	there's	one	more	thing	I	want	to	do	inside	of	this	one	before	we	finished	for	this	video.And	that	is	I	want	to	create	an	initial	state.So	up	here,	I	create	a	const	initial	state,	it's	always	a	great	idea	to	have	an	initial	state	if	you
want	to	reset	stuff.And	we	want	to	do	that	later.So	I'm	going	to	structure	the	state	just	as	the	one	that	we	got	back	from	the	Movie	Database	API.So	we	have	the	page,	it's	going	to	be	zero	initially,	then	we	have	the	results.That's	the	property	that	holds	all	the	movies	are	going	to	provide	it	with	an	empty	array	initially,	where	the	total	underscore	pages
is	going	to	be	zero.And	the	total	underscore	results,	it's	going	to	be	zero	also.So	this	is	the	initial	state.And	now	we	can	give	this	initial	state	to	the	use	state	here	where	we	create	a	state.So	provided	with	the	initial	state,	and	this	will	make	sure	that	it	gets	the	state.All	right.So	that's	our	custom	hook.For	now,	we	go	back	to	the	home	component.And
now	we	have	to	use	this	custom	hook.I	already	created	this	comment	here	where	we're	going	to	import	it.So	we	import	curly	brackets,	use	movie	fetch,	like	this,	from	dot	dot	forward	slash	hooks,	and	use	home	fetch.Then	inside	our	sad	little	empty	home	component,	we're	going	to	use	this	one.And	yet	again,	I'm	going	to	use	ESX	destructure	syntax	to
get	those	properties	from	the	object	that	we	exported	here.We	export	an	object	with	all	these	values	here.So	I'm	going	to	destructure	them	out	here.curly	brackets	stayed	loading	an	error,	equal	sign	and	our	call	my	custom	hook	use	movie	fit.So	this	will	hopefully	work.We	console	log	in	out	to	state	so	save	this	file,	make	sure	that	you	also	save	the
hook	itself.And	go	back	to	the	browser.reload	it.Yeah,	I	have	some	arrow	here.Use	movie	fetch	is	not	exported,	didn't	I	export	it?	No,	I	think.Yeah,	it	works.So	that's	sweet.We	have	successfully	refactored	this	application	into	something	that	what	I	think	is	a	worse	application	because	we	use	in	classes.Now,	I	wouldn't	do	it	like	this,	I	would	keep	the
functional	components	and	the	state	with	hooks,	and	the	use	effect	and	the	use	state	stuff	that	we	use	in	the	application.But	it's	up	to	you	to	decide	that.But	hopefully	this	gave	you	an	idea	on	how	class	components	works	in	react,	and	to	keep	state	in	class	components.And	the	lifecycle	methods.There's	more	lifecycle	methods,	but	I	won't	go	into	them
here	because	I'm	not	using	them	in	this	application.So	that's	why	all	right,	in	the	next	bonus	section,	I'm	going	to	talk	about	TypeScript.And	we're	going	to	refactor	our	application	into	TypeScript.Welcome	to	this	bonus	section,	where	we're	going	to	reflect	your	application	into	using	TypeScript.And	TypeScript	itself	is	quite	a	large	topic.So	we	will
only	scratched	the	surface	actually.But	hopefully,	that's	going	to	be	enough	to	give	you	a	basic	understanding	of	how	TypeScript	work	and	especially	with	react.So	TypeScript	is	an	extension	of	JavaScript.And	it	adds	types	to	JavaScript.So	that's	great,	because	JavaScript	is	actually	quite	a	loose	language	where	you	can	do	whatever	you	want,	and	it
still	works.So	it	can	be	a	little	bit	messy	if	you're	in	a	large	application.So	TypeScript	will	transpile	down	to	JavaScript	in	there.And	so	that's	why,	as	they	say	here,	all	valid	JavaScript	code	is	also	TypeScript	code.So	you	can	decide	how	much	you	want	to	type	stuff	and	how	strict	you	want	to	be	with	TypeScript.And	TypeScript	is	gaining	a	lot	more
ground.And	it's	almost	a	standard	today,	when	you	create	something	from	scratch.A	lot	of	applications,	of	course,	don't	use	TypeScript,	as	they	are	And	there's	a	lot	of	code	base	out	there	that	hasn't	been	refactored.And	you	probably	shouldn't	do	it	for	all	of	the	applications	either.But	TypeScript	is	great	if	you	have	quite	a	large	application,	and	you
want	to	keep	track	on	types.And	it's	really	great	also,	because	it's	kind	of	like	to	have	a	second	coder	beside	you,	that	tells	you	what	you	do	wrong.Meanwhile,	your	code.So	it's	a	great	way	to	write	a	lot	more	error,	less	code.I	think	that's	one	of	the	great	things	with	TypeScript	because	you	have	a	really	powerful	IntelliSense	with	TypeScript,	and	it	will
tell	you	if	you	do	something	wrong.All	right,	that	was	a	really	short	introduction	to	TypeScript.In	the	next	video,	we're	going	to	set	up	a	project	and	start	refactoring	our	application	into	using	TypeScript.Alright,	let's	start	refactoring	our	application	into	using	TypeScript.And	I'm	actually	going	to	create	a	complete	new	application	with	create	react
app.And	that's	because	you	can	also	create	an	application	with	TypeScript	support,	and	it	gives	you	some	defaults	and	setup	that	we	can	use.So	we	don't	have	to	do	that	ourselves.If	we	look	here,	with	create	react	app,	we	can	flag	it	with	template	and	TypeScript.And	that	will	create	our	application	with	TypeScript	support.So	that's	what	we're	going	to
do	first.So	make	sure	that	you're	inside	a	folder	where	you	can	create	a	new	project,	and	then	go	inside	a	terminal.And	that's	going	to	show	you	this	also.And	then	we	type	in	MP	x,	create	dash	react	dash	app.And	then	we	name	our	application,	React	dash	or	IMDb	dash,	Ts.And	I	think	you	also	must	have	only	lowercase	letters	in	the	naming.Then	we
flag	it	with	template	type	scripts,	like	this.And	we	press	enter,	and	we	wait	for	it.Alright,	that's	the	bootstrapping	of	the	application	itself.So	let's	navigate	inside	of	that	folder,	CD,	React	dash	or	IMDb	dash	Ts.And	you	can	see	that	we	have	some	different	files	here.So	that's	great.Well,	one	more	thing	that	we	need	to	do	before	we	can	start	coding,	and
that	is	to	install	our	dependencies	in	this	TypeScript	application,	also,	to	have	the	style	components.And	we	also	have	the	React	router.So	let's	start	with	the	style	components,	MPM,	I	style	dash	components.And	as	this	is	a	TypeScript	project,	we	also	need	the	types	for	style	components.And	if	a	library	won't	provide	you	with	types,	by	default,	you	can
usually	find	the	types	in	AD	types	forward	slash,	and	then	you	can	type	in	the	name	of	the	library	that	you're	installing.So	in	this	case,	it's	going	to	be	ad	types,	forward	slash	styled	dash	components.And	we'll	press	enter.Alright,	so	that	installed	correctly.And	then	we	also	need	to	install	the	React	router,	the	next	version,	the	version	six	and	the	types
for	that	one.So	MPM	I,	if	you	remember,	we	also	install	a	library	that's	called	history,	that	one	is	used	for	react	router,	history,	space,	and	then	we	have	the	React	dash	router	dash	dome	at	next,	just	as	before	we	grab	in	your	next	version,	and	that	is	the	version	six,	then	we	have	a	space.And	we're	going	to	grab	the	types	for	this	one	also.So	add	types,
or	a	slash,	React	dash	router,	dash	dome,	and	we	press	enter.Alright,	so	that's	the	dependencies	we	need	for	this	product.But	there's	one	more	thing	we	have	to	do,	because	now	we	have	bootstrap	this	new	TypeScript	application.But	we	want	our	old	files	inside	of	that	one.So	if	we	look	here,	here's	the	file	for	this	project.I'm	also	showing	the	hidden
files	here.So	we	have	the	Git	and	Git	ignore.So	now	inside	of	this	src	folder,	here,	we	have	all	the	TypeScript	files.But	we	want	our	files	instead.And	therefore,	we	can	actually	remove	some	of	those	files	here,	we	don't	need	to	set	up	tests,	we	don't	need	a	service	worker,	we	don't	need	a	logo	index	CSS	app,	we	can	still	keep	the	index	actually,	because
that	one	is	already	set	up	for	us.The	other	ones	we	can	delete.So	just	keep	the	index	TSX	and	the	React	app	and	the.ts.And	remove	the	files.Like	this.And	then	from	our	finished	application,	I'm	using	the	hooked	version	now.So	not	the	class	based	one,	use	the	hook	based	one.And	we're	going	to	grab	from	the	src	folder,	the	API	app	components,	config,
global	style	helpers,	hooks,	images,	everything	except	the	index.js	file,	copy	these	ones,	and	go	inside	the	src	folder	of	the	newly	bootstrapped	TypeScript	project	and	paste	them	in.And	the	application	won't	work	now	because	we	have	to	do	a	lot	of	stuff	here	to	get	it	to	work,	but	that's	fine.There's	one	more	thing	we	have	to	do	also	analysis	to	copy
your	dot	m	file	like	this	or	if	it	says	that	you	can't	copy	it	because	it's	hidden,	you	can	create	a	new	dot	m	file	and	set	up	your	environmental	variable	for	the	Movie	Database	API	there	again,	so	just	copy.So	just	copy	that	code	from	your	other	m	file	and	create	a	new	one	and	paste	it	in.Because	it's	really	important,	because	we	need	that	one	to	be	able
to	fetch	data	from	the	Movie	Database	API,	we	have	copied	all	the	files	that	we	need	for	our	TypeScript	project.And	that	means	that	we	can	close	the	other	project	and	we're	going	to	be	in	the	new	project	from	here	on.In	the	next	video,	we're	going	to	convert	this	base	files	here,	the	API,	app	config,	global	style	helpers,	and	stuff	like	that	into
TypeScript.And	then	we'll	move	on	with	the	components	and	the	home	and	the	movie	page.Okay,	before	we	do	anything,	I	have	to	correct	the	mistake	I	did	in	the	last	video.And	that	is	the	dot	m	file,	it	shouldn't	be	in	the	src	folder,	it	should	be	in	the	root	folder.So	move	this	one	out	to	the	root	folder	of	your	project.And	make	sure	that	it's	outside	the
src	folder,	otherwise	it	won't	work,	we	can	go	inside	of	our	terminal	and	try	to	start	a	project	up,	we	will	get	an	error	or	probably	a	lot	of	them.As	you	can	see,	because	we	haven't	actually	converted	anything	into	TypeScript	yet.So	that's	why.So	first	in	the	index	dot	TSX	file,	we	have	to	do	some	cleanup,	we're	going	to	remove	the	index	dot	CSS,	we're
going	to	remove	the	ServiceWorker	like	this,	and	save	the	file.And	then	we	have	something	that's	called	react	dash	app,	dash	m.ts.And	this	is	the	references	for	the	types	for	react	scripts.So	we'll	leave	this	alone.And	also	we	have	something	here	that	you	can	see	that's	called	Ts	config	dot	JSON.And	this	is	the	the	config	you	can	set	up	for
TypeScript.So	this	is	why	I	wanted	to	bootstrap	the	application	with	create	react	app,	because	they	already	set	this	one	up	for	us.So	they	have	a	lot	of	great	defaults	here,	that	set	up	for	us.And	if	there's	something	special	you	want	to	configure	for	TypeScript,	you	can	do	it	in	this	file.So	you	can	add	them	here,	it's	actually	a	lot	you	can	do	to	set	it	up
just	as	you	like	it.But	we're	not	going	to	do	that	we're	going	to	use	the	defaults	that	create	react	app	provides	for	us.So	we	cleaned	up	the	index	dot	TSX	file.And	we're	going	to	refactor	all	of	the	other	files	here	in	this	video.So	we	can	start	with	the	api.js	file,	we	have	to	rename	it,	we're	actually	going	to	rename	all	of	these	files.Because	they	they
should	be	called.ts.So	that	it	indicates	that	it's	a	TypeScript	file,	so	we	renamed	them	to.ts.Instead,	all	of	these	files	is	going	to	be.ts.The	app	is	actually	going	to	be	dot	TSX.And	that's	because	we	using	JSX,	inside	of	that	one,	otherwise,	it	won't	work.So	every	time	you	use	JSX,	make	sure	that	you	have	the	file	extension	dot	TSX.Otherwise,	type
TypeScript	will	fail.Alright.So	that's	the	renaming	of	the	files.And	then	we	can	start	in	the	api.ts	file.And	for	this	one,	we're	actually	going	to	create	some	types	because	we	returning	data	from	the	API,	and	we	need	to	type	that	data.But	first,	we	can	start	to	actually	type	the	functions	themself.So	here,	you	can	see	that	it	complains,	no	parameter
search	term	implicitly	has	an	any	type.And	that's	because	we	haven't	set	any	type.This	one,	if	we	want	to	specify	a	type	on	this	parameter,	we	use	a	colon.And	then	we	specify	it	as	a	string.And	you	can	see	that	it	stops	complaining	now.And	that's	great.And	the	page,	this	one	is	actually	going	to	be	a	number.So	we	specify	it	as	a	number.So	that's	how
you	specify	parameters,	you	have	a	lot	of	types	you	can	specify	for	them.And	then	if	you	want	to	specify	the	return	type	on	the	function,	you	can	see	that	TypeScript	actually	won't	complain	out	because	the	default	setup	don't	force	us	to	specify	a	return	type.But	I	want	to	show	you	how	we	can	do	that.And	in	this	case,	it's	a	promise	that	we	return
because	we're	fetching	from	the	API	and	we	get	back	a	promise.So	if	we	want	to	type	the	return	type	to	be	a	promise,	we	have	a	colon	here.And	then	we	specify	it	as	a	promise.But	the	promise	needs	something	else	you	can	see	here	represents	the	completion	of	another,	blah,	blah,	blah,	generic	type	promise	requires	one	type	argument.And	when	you
send	in	a	type	argument	type	like	this,	you	do	it	inside	of	angle	brackets,	and	we're	going	to	specify	that	this	is	going	to	be	the	type	of	a	new	type	that	we're	going	to	create.That's	called	movies.We	haven't	created	this	one	yet.So	of	course,	it	complains.So	we're	going	to	do	that	in	a	second.We're	only	going	to	specify	this	const	here	also,	the	endpoint
that	we	create	here.We	have	a	colon	and	then	I	type	it	as	a	string.So	that's	how	we	typed	this	function.And	now	we're	going	to	create	a	type.That's	called	movies.And	the	actual	data	that	we	get	back	from	the	API	is,	it	has	a	lot	of	properties.So	I'm	only	going	to	type	the	properties	that	I'm	actually	using	inside	of	the	application.So	we	can	mark	it	with
types	here.And	then	I	got	to	export	this	type,	because	I'm	going	to	use	it	in	another	file.So	that's	great.You	can	also	export	the	types,	you	don't	have	to	specify	them	all	over	the	place,	you	can	specify	them	in	one	file,	and	you	can	export	them	and	import	them	wherever	you	need	them.So	export	type	movies	like	this.And	from	the	API,	we	get	the
page.And	that	one	is	going	to	be	a	number,	you	could	also	create	something	that's	called	an	interface.And	then	you	do	it	like	this.They	are	almost	the	same	today,	in	the	new	versions	of	TypeScript	before	there	was	some	major	differences.Actually,	the	recommendation	is	to	use	type	in	a	react	application.So	we're	going	to	do	that.So	export	type	movies
and	then	equals	and	the	object,	then	we	have	the	results.And	the	results	is	actually	going	to	be	all	the	movies,	we're	going	to	specify	another	type,	that's	called	a	movie,	that's	a	singular	movie.And	this	one	is	going	to	be	an	array.So	it's	going	to	be	an	array	of	the	movie	type.So	this	is	how	we	specified	our	array.So	if	you	had	an	array,	for	example,	with
only	numbers,	you	can	specify	it	like	this.But	we	are	going	to	create	another	type	object,	that's	called	movie.And	we're	going	to	do	that	in	a	second.But	first,	we're	also	going	to	type	the	total	pages,	it's	going	to	be	number.And	then	we	have	the	total	results,	that	one	is	also	going	to	be	a	number.Do	some	more	formatting.And	you	can	see	in	the	type	of
bacteria	that	it	uses	see	my	colon	and	not	coma	as	in	a	regular	JavaScript	object.I	actually	think	it	will	work	with	coma	also.But	the	formatting	is	set	up,	so	that	it	uses	see	my	column,	but	you	can	see	that	it,	it	seems	to	be	working.But	when	I	want	to	format	it,	yeah,	it	will	return	to	the	semi	colons.Okay.All	right.So	we	need	to	specify	each	specific
movie	here.So	we	create	another	type	that	I	export,	export	type	movie	equals	an	object.And	here	we	have	a	few	more	of	the	different	properties.So	we	have	the	backdrop	underscore	path	is	going	to	be	a	string,	the	ID	is	going	to	be	a	number,	the	original	underscore	title	is	going	to	be	a	string,	the	over	view	is	going	to	be	a	string,	it's	easy	to	have	a
typo	here.So	be	careful.popularity	is	going	to	be	a	number,	poster	underscore	path	is	going	to	be	a	string,	the	title	is	going	to	be	a	string,	the	vote	underscore	average	is	going	to	be	a	number.And	the	vote	underscore	count	is	going	to	be	a	number,	the	budget	is	also	going	to	be	a	number.And	then	we	have	the	run	time,	it's	the	number	also	and	and	the
last	one	is	the	revenue.And	it's	also	going	to	be	a	number.So	that's	the	type	of	object	for	a	singular	movie.And	now	you	can	see	that	it	won't	complain	here,	because	we	using	that	one	and	telling	the	results	is	an	array	of	the	type	movie.So	each	element	in	the	array	is	going	to	be	an	object	of	this	type.So	that's	how	we	specified	it	now.All	right,	and	you
can	see	that	it	won't	complain	here	now,	because	we	using	this	type	here,	the	movies,	so	that's	fine.Then	we	move	on	to	the	fetch	movie,	the	singular	fetch.For	each	movie,	we	have	this	parameter	here.So	we	have	to	use	parentheses.When	we	type	this,	the	movie	ID	is	going	to	be	a	number.And	the	return	type	is	going	to	be	a	promise	again.And	this
time,	it's	the	movie,	we	already	created	this	one	because	it's	a	single	movie.So	we	have	this	object	here.So	that's	great.And	we	can	also	specify	the	endpoint,	you	can	see	that	it	won't	complain	because	the	default	setup	won't	force	us	to	specify	everything.But	it's	always	a	great	ID	to	specify	what	type	you	return	in	the	context.All	right.So	that's	the
fetch	movie.And	you	can	see	also	bonus	material	for	login.We're	not	going	to	type	this	one.So	I'm	going	to	stop	here	for	the	basic	fetch	functions	here.So	fetch	credits	We	have	the	movie	ID,	that	one	is	going	to	be	a	number,	like	so.And	it	will	also	return	a	promise	that	we	create	a	type	that	called	credits.But	before	we	do	that,	we	can	also	specify	the
credits	endpoint	as	a	string.All	right,	then	we	go	up	here,	again,	just	below	the	type	movies,	we're	going	to	export	the	type	that's	called	credits,	it's	always	a	great	idea	to	export	the	types	because	you	never	know	when	you	need	them.That	way,	you	make	sure	that	you	can	access	them	from	anywhere	in	your	application,	the	ID	is	going	to	be	a	number,
the	cast,	we're	actually	going	to	create	a	new	cast	object	for	that	one.So	it's	going	to	be	an	array	with	an	object	that	we	specify	as	a	cast.And	we're	going	to	do	that	in	a	second,	we	have	the	crew,	and	it's	also	going	to	be	a	new	type	object.So	an	array	of	crew	like	this.So	up	here,	we	export	the	type	to	cast	equals,	we	have	the	character	is	going	to	be	a
string,	the	credit	underscore	ID	is	going	to	be	a	string,	the	name	is	going	to	be	a	string.And	a	profile	underscore	path	is	also	going	to	be	a	string.If	you	want	to	type	these	in	one	row,	instead	of	typing	them	out,	when	all	of	them	going	to	be	a	string,	you	can	do	it	like	this.You	have	a	square	bracket,	and	then	you	have	the	property,	the	property	is	going
to	be	a	string.And	then	the	type	is	going	to	be	a	string	like	this.And	this	will	also	work.But	I	think	it's	better	to	be	more	explicit	and	type	all	of	them	like	this,	then	we	have	the	crew.So	export	type,	crew	equals	object	job	is	going	to	be	a	string	name	is	also	going	to	be	a	string,	and	the	credit	underscore	ID	is	going	to	be	a	number	or	to	format	it	and	save
it.And	hopefully	this	will	work,	you	can	see	that	it	will,	it	will	give	us	some	arrows	here	now	because	I	won't	type	this	one	here.Or	is	it	only	Yeah,	I	can	actually	just	type	this	one.So	we	don't	have	an	error,	the	request	token	is	going	to	be	a	string.The	username	is	also	going	to	be	a	string.And	the	password	is	also	going	to	be	a	string	some	more
formatting,	and	then	we	have	them	on	the	wrong	row.So	that	will	get	rid	of	the	arrows.But	we	won't	focus	on	these	below	the	bonus	material,	all	of	these	ones	here.So	that's	what	we're	doing.Alright,	save	the	file.So	that's	the	api.ts,	then	we'll	have	our	app	dot	TSX	file.You	can	see	here	now	that	it	complains,	because	we	don't	have	the	types	for	this
one.And	that's	because	we're	using	the	next	version.So	in	this	case,	I'm	just	gonna	ignore	it,	because	I	know	it	will	work.So	when	you	ignore	something	with	TypeScript,	you	can	do	that	by	command	and	n	at	Ts	dash	ignore.And	that	will	get	rid	of	that	error.So	we	have	to	do	this	for	now,	before	it	is	officially	released,	then	they	will	provide	the	types	for
it.And	then	we	don't	have	to	do	it	like	this.And	the	only	thing	we	have	to	do	more	is	to	specify	our	react	component.So	this	is	a	functional	component.And	if	we	do	a	colon,	and	react.fc,	we	have	that	built	into	react.So	we	have	that	type	for	a	functional	component.So	this	is	everything	we	have	to	do	to	specify	this	as	a	react	functional	component.Alright,
save	the	file.Then	we	have	the	config.ts	file.And	the	only	thing	we	have	to	do	here,	if	we	want	is	to	specify	those	strings,	because	all	of	them	is	strings.This	one	can	be	undefined	also.So	yeah,	well,	we	can	do	it,	API	URL	colon	string,	this	one	colon	string.And	if	it	can	have	more	than	one	value,	we	can	have	this	pipe.And	we	specify	it	as	undefined	also,
because	you	can	see	if	I	remove	this	one	here,	it	complains	because	it	tells	us	that	type	string,	undefined	is	not	assignable	to	type	string,	because	we	saying	that	it	can	only	be	a	string,	but	it	can	actually	also	be	undefined.So	TypeScript	tells	us	that	Yeah,	you're	doing	something	wrong	here.So	this	one	could	also	be	undefined,	so	you	should	do
something	about	it.So	that's	what	we're	doing	here.Pipe	undefined,	like	this,	and	it	will	be	happy	and	all	of	the	other	ones	will	be	strings	here.So	I'm	just	going	to	do	it	quite	fast.string,	string	string	Spring	lists	one	here,	a	string	and	this	string	and	the	last	one	a	string.Right,	save	the	file.That's	the	config.And	then	we	have	the	global	style,	we	don't
need	to	do	anything	inside	of	here,	this	is	a	start	component.So	it's	fine	like	it	is	now,	the	helpers.ts	here,	we're	going	to	start	this	ones	up	also.So	here	we	have	this	time	puram.So	we	create	parenthesis.And	this	one	is	going	to	be	a	number.But	the	return	type	of	the	function	itself	is	going	to	be	a	string.So	we	type	it	like	this,	and	ours	is	going	to	be	a
number.And	the	means	is	also	going	to	be	a	number.So	that's	it	for	that	function,	then	we	have	to	convert	money,	parenthesis,	it's	going	to	be	a	number,	and	it's	also	going	to	return	a	string.And	this	one	is	a	special	one.So	you	can	see	that	this	format	here.The	type	is	actually	this	one	here	into	into	DOT	number	format,	international	number	format.So
copy	this	one.And	we	can	actually	specify	this	as	a	type	also	for	it.Like	so.Then	the	last	one	inside	of	this	file,	is	the	state	name.This	one	is	going	to	be	a	string.Jason,	of	course,	has	an	Annie	type	as	a	return	type,	we	can	specify	Annie,	it	shouldn't	actually	complain	here.Yeah,	and	that's	because	this	is	named	the	wrong	way.Here	it	should	be	session
state.So	that's	why.So	JSON	dot	parse,	has	an	any	type.So	that's	why	we	have	to	specify	it	as	Annie,	you	should	avoid	specify	anything	as	Annie,	because	you	remove	all	the	type	checking	here	when	you	specify	it	as	any,	because	you're	saying	that	it	can	be	of	any	type.So	always	make	it	a	habit	to	not	use	any	if	you	can	do	only	use	it	in	specific	case	like
this	one,	because	this	one	will	return.And	that's	why	we	have	to	specify	it	as	an	ID.And	that's	it	for	these	files.Here,	we	can	start	up	our	application	to	see	that	it	works	NPM	start.And	it	seems	to	be	working.So	that's	sweet.In	the	next	video,	we're	going	to	refactor	the	homepage	to	use	TypeScript	and	also	the	components	that	we	use	on	the	home	page
itself.Alright,	let's	continue	to	refactor	the	application	into	TypeScript	and	move	inside	of	the	component	home	dot	j	s,	we're	going	to	rename	this	file	to	Ts.And	also	I	can	tell	you	that	if	we	look	here	in	the	terminal,	I	don't	run	my	dev	environment,	because	when	you	change	the	file	names,	it	will	break.So	you'll	have	to	restore	it	again.So	that's	why	I'm
going	to	start	it	up	later.But	if	some	stuff	don't	work,	because	I've	changed	some	file	name,	or	things	like	that,	try	to	break	it	and	start	up	your	dev	environment	again.rights	are	renamed	the	home	Ts	like	this.And	then	inside	of	that	file,	the	only	thing	we	have	to	do	here	is	to	specify	this	as	a	react	dot	functional	component	react.fc.And	you	can	see
there	actually	made	a	mistake	here,	this	one	shouldn't	be	Ts,	then	it	won't	work	because	we	have	gay	sex	here.So	this	one	should	be	dot	TSX.So	change	that	one	to	home	dot	TSX.And	then	it	will	work	hopefully,	here	we	have	some	stuff	that	it	complains	about.And	that	is	because	we	haven't	typed	anything	yet	in	our	hooks	that	fetches	that	data.So	if
we	move	inside	of	the	hooks,	and	use	home	fetch,	first	we	rename	this	file	to.ts.Here,	we're	not	using	any	Deus	Ex,	so	we	can	name	it	to.ts.Okay,	the	first	thing	we	have	to	do	here	is	to	import	the	type	movie.And	we	do	this	inside	of	curly	brackets,	because	this	is	not	the	default	export.And	then	it	complains	here	on	the	page,	this	one	is	going	to	be	a
number	and	a	search	term,	it	actually	interprets	this	one	as	a	string,	because	we	set	it	as	a	default	string	here.So	we	don't	have	to	specify	anything	more	here.But	it	complains	about	the	state.And	that	is	because	if	we	hover	over	this	use	state,	you	can	see	that	results	is	set	to	never	it	doesn't	know	what	type	this	will	be.That's	why	we	can	specify	it	as
movie	and	an	array.So	we're	telling	it	that	we're	setting	this	to	an	empty	array,	but	it	should	interpret	it	as	a	movie	array.So	that's	why	we	imported	it	up	here.And	that's	why	we	also	get	the	types	on	the	state	correctly	here.So	in	the	home,	you	can	see	that	the	warnings	has	disappeared	because	now	it	knows	all	these	types	because	it	interpreted	from
this	hook	here	as	we	telling	it	that	this	state	is	Gonna	be	of	this	type.And	then	it	follows	along	inside	of	this	file,	that's	super	great.Say	the	home	also,	then	we're	going	to	refactor	the	components	that	we're	using	for	the	home	component.So	we	have	the	bottom.So	in	the	index.js	file,	that	one	is	going	to	be	renamed	to	index	dot	TSX.And	the	style	file	is
going	to	be	renamed	to.ts.Because	we're	not	using	any	JSX	inside	of	that	one.And	for	a	style	file,	we	don't	need	to	do	anything	there.But	in	the	index	dot	TSX	file,	we	have	to	do	some	stuff,	because	now	we	have	some	props	here.And	we're	also	going	to	remove	prop	types.We	don't	need	that	one	when	we're	in	TypeScript.So	remove	everything	that	has
to	do	with	the	prop	types,	then	here	are	going	to	specify	types.And	I	created	a	type	that	are	called	props.You	can	call	it	whatever	you	want,	it	doesn't	need	to	be	called	props.So	we	have	the	text	prop	here,	text,	that's	going	to	be	a	string.And	then	we	have	the	callback,	then	I'm	going	to	type	this	very	loosely,	it's	going	to	be	a	function	that	returns
nothing.So	when	we	specify	to	void	because	void	means	that	it	won't	return	anything.So	this	is	a	click	callback.All	right,	but	it	still	complains,	we	have	created	a	prop	object.So	we	have	to	specify	the	button	as	a	react	dot	functional	component	react.fc.And	if	we	want	to	specify	our	props,	we	can	do	that	inside	of	angle	brackets.And	then	we	use	our
props	object.And	then	you	can	see	that	it	works.It	knows	the	types	now	of	these	props,	you	can	see	if	we	hover	over	them,	you	can	see	the	types.Right,	so	that's	it	for	the	bottom.Now	we	have	the	grid,	the	grid	styles,	we're	going	to	rename	that	one	to	grid	styles.ts.And	the	index	is	going	to	be	renamed	to	dot	TSX.Yet	again,	for	the	stars,	we	don't	have
to	do	anything	here	because	we're	not	sending	in	any	props	to	the	style	components.In	the	index	dot	TSX	file,	we	have	to	do	some	stuff,	though.So	we	remove	the	prop	types.And	also	make	sure	to	remove	them	at	the	bottom	here,	like	this.Then	I	specified	types.And	I	create	a	type	props	an	object	and	we	have	the	header.We	set	up	one	as	a	string,	the
children,	we	don't	need	to	type	that	one	because	that's	built	in	to	react.So	we	specify	the	grid	to	react.fc.We	have	angle	brackets,	and	we	give	it	the	props	object.This	is	it	for	a	grid.Move	on	to	the	header	header	dots	header	styles	is	going	to	be.ts	like	this,	and	the	index	is	going	to	be	dot	TSX.Nothing	to	do	in	the	stars	file.But	in	the	index	dot	TSX.We
can	do	some	stuff.We	only	have	to	specify	this	as	a	react.fc.That's	everything	for	the	header.All	right,	then	we	have	the	hero	image	here	we	image	dot	Stiles	is	going	to	be	renamed	to.ts.And	this	index.js	is	going	to	be	renamed	to	dot	TSX.Instead,	in	this	star	component,	we	actually	have	to	do	something	because	we	have	this	prop	here	and	we	haven't
thought	that	one	up	here.I	mark	it	as	types.I	create	a	type	props	equals,	we	have	the	image	and	this	is	going	to	be	the	URL	so	it's	a	string.And	when	you	type	a	style	component,	you	do	it	here	just	after	the	components	you	choose	to	create.We	have	the	angle	brackets	again,	and	we	send	in	the	props	like	this.There	you	have	it,	that's	the	styles.Then	we
have	the	index	dot	TSX	remove	the	prop	types.Just	as	before	we	specify	our	types,	type	props	equals	an	object	image	is	going	to	be	a	string	title	is	going	to	be	a	string	and	the	text	is	also	going	to	be	a	string	we	specify	it	as	a	react.fc.We	have	the	angle	brackets	and	send	in	the	props.And	this	should	be	it	for	this	component	save	it	move	on.Moving	for
moving	football	These	are	for	the	movie	page	we	have	the	search	for	the	index.js	is	going	to	be	renamed	to	index	dot	TSX.The	search	for	styles	is	going	to	be.ts	we	don't	have	to	do	anything	In	this	style	file,	but	in	the	index	dot	TSX,	we	remove	the	prop	types.everything	that	has	to	do	with	prop	types.Then	we	have	the	types.I	create	a	type	props	equals
an	object.And	then	we	have	the	set	search	term	and	this	one	is	going	to	be	a	callback.And	how	do	we	type	this	one?	Well,	I	create	a	ternary	operator	checking	if	the	clickable	is	true	or	not,	I	show	the	link	component	with	the	image	wrapped	inside	it.And	that	means	that	we'll	be	able	to	click	on	this	thumbnail.Otherwise,	that's	what's	right	to	the	colon
here,	I	just	show	the	image	as	it	is	or	don't	wrap	it	in	a	link	component.So	the	user	won't	be	able	to	click	it.Save	the	file,	go	back	to	the	application.And	hopefully	we	should	be	able	to	click	our	thumbnails,	you	can	see	that	we	have	this	nice	little	hand	here.That	means	that	we've	created	a	link.So	if	we	click	this	one,	you	can	also	see	that	we	have	the
movie	ID	up	here.And	that's	the	one	that	we're	going	to	grab	in	the	puram	in	our	movie	component.So	it's	working	great.And	this	is	actually	it	for	the	routing,	there's	no	more	routing	we	need	to	do	in	this	application.And	in	the	next	video,	we're	going	to	start	creating	the	movie	page.Okay,	we're	just	going	to	do	a	little	bit	of	scaffolding	in	our	movie
component	before	we	move	on.So	up	here	we're	already	importing	react,	we're	going	to	import	some	stuff	from	the	config	also.So	import,	we're	going	to	need	the	image,	underscore	base,	underscore	URL	capital	letters	and	the	poster	underscore	size.And	we're	going	to	import	it	from	dot	dot	forward	slash	config.Then	we're	going	to	have	our
components	we're	going	to	create	new	ones	for	this	one.But	two	of	them	we	already	created.We're	going	to	import	the	grid	from	dot	forward	slash	win.Then	we're	also	going	to	need	a	spinner	so	import	spinner	Apart	from	dot	forward	slash	spinner,	and	then	we're	going	to	create	the	other	ones	later,	we're	going	to	create	a	hook	for	this	one.And	we
also	need	an	image.And	that's	the	fallback	image	just	as	before.So	import,	no	image,	from	dot	dot	forward	slash	images,	and	no	underscore	image	dot	jpg.And	as	always	be	very	careful	to	actually	add	the	extension	here,	when	it's	an	image.All	right,	and	then	we	have	our	movie	component,	this	one	is	actually	not	going	to	have	an	implicit	return,	we
create	curly	brackets,	because	we're	going	to	have	some	logic	in	this	one.So	we	create	a	return	statement,	parenthesis.And	then	we're	going	to	create	a	react	fragment,	like	this.And	inside	for	now,	we	can	just	have	a	div	that	says,	movie,	do	some	auto	formatting,	and	save	it.And	I	think	this	should	be	it,	go	back	to	the	browser.Try	something	else
here.Or	we	could	actually	just	have	clicked	on	one	of	these.Yeah,	and	it	shows	movies.That's	great.We	know	that	it	works.And	then	we	can	move	on.And	we're	going	to	start	by	fetching	the	data	from	the	API	so	that	we	have	something	to	work	with.All	right,	we're	going	to	create	our	second	custom	hook.Now,	I'm	not	going	to	create	it	first	in	the	movie
component,	and	then	move	it	to	a	custom	hook.Because	now	we	know	how	we	can	create	a	custom	hook.So	that's	why	I'm	doing	it	instantly	in	that	one	instead.So	in	the	hooks	folder,	let's	create	a	new	file	that's	called	use	movie,	fetch	capital	M,	capital	F,	and	dot	j	s.And	as	I	told	you	before,	it's	important	to	name	your	hooks	with	use	before	the
name.This	is	the	actual	finance.So	it	doesn't	matter	here.But	it's	important	that	you	name	your	actual	hook	with	use	before.So	for	this	hook,	we're	going	to	import	curly	brackets,	we're	going	to	need	use	state	and	use	effect	from	react.Just	as	before,	we	don't	really	need	a	main	react	library	for	this	one,	because	we're	not	doing	any	JSX	and	stuff	like
that.So	that's	why	we're	not	importing	it,	we're	going	to	import	the	API	object	from	dot	dot	forward	slash	API.And	that	will	give	us	access	to	all	these	nice	functions	that	are	created	for	us.Then	we	create	the	actual	hooked,	so	export	const,	use	movie	fetch,	equals	and	this	one	is	actually	going	to	have	a	parameter,	because	it's	going	to	be	the	movie
ID.And	I'll	talk	more	about	that	in	a	second.So	that's	the	arrow	function.And	up	here,	I	create	three	states,	the	state	and	setter	for	that	state.I	call	the	use	state	hooked.And	I'm	going	to	give	it	an	empty	object	as	default	value.Now	I	create	a	loading	state	and	set	loading.You	state	I'm	going	to	set	this	one	to	true	initially,	because	this	component	is
going	to	start	by	fetching	the	data	for	a	movie,	so	we	can	set	that	one	to	true.And	then	we're	going	to	have	the	error	and	a	set	error	just	as	before,	and	this	one	was	set	to	false.So	you	state	and	give	it	an	initial	value	of	false,	right.So	that's	the	state	we're	going	to	need	for	this	one.And	then	we're	just	going	to	need	one	use	effect.For	this	one,	because
we	only	fetching	data	one	time,	and	that	is	when	the	component	mounts,	and	then	we're	not	going	to	fetch	anything	more,	because	then	we	have	all	the	data	from	the	movie	that	we	need	to	have	the	inline	arrow	function.And	we	have	the	dependency	rate.And	this	one	is	going	to	change	if	the	movie	ID	changes,	it	actually	not	going	to	change	now,
because	we	just	do	it	initially,	as	I	told	you,	but	as	I	also	told	you,	we	need	to	specify	all	the	dependencies	for	our	use	effect.So	that's	fine,	in	this	case,	to	have	it	there,	it	only	going	to	fetch	it	one	time.And	then	as	a	use	effect	can't	have	an	async	function	here,	we	create	another	function	that	async	fetch	data	equals	async.And	in	this	case,	I	placed	it
inside	of	the	use	effect,	and	I'm	going	to	show	you	why	in	a	second	also.So	we	have	an	async	arrow	function.And	then	we	can	do	our	fetching	logic	inside	of	this	one,	and	it's	going	to	be	quite	similar	to	the	other	one	that	we	did.So	we	have	a	try	block.And	we're	going	to	catch	the	error	if	there	is	one.And	if	there	is	an	error	with	set	error	to	true	like
this.Then	in	our	try	block,	the	first	thing	we	do	is	this	That	loading	to	true.And	we	also	set	error	to	false.Yes,	that's	we	did	before.And	then	we	can	fetch	our	data.But	I	have	a	typo	here.It	just	say,	error.Yeah,	I	guess	I	misspelled	it	up	here.Yeah.There	you	have	it,	right.Yeah,	this	one	too.Ah,	something	like	that.Right.So	first,	we're	going	to	grab	the
movie	data	from	one	resource	from	them	point.And	then	we	also	have	to	grab	the	credits	that	we	get	from	another	resource	from	them	point.So	we	have	const,	movie	equals	a	weight.And	from	the	API,	I	created	a	function	that	called	fetch	movie	without	an	S	at	the	end.There	we	go,	going	to	give	it	the	movie	ID.Right.So	that's	the	movie,	then	we	also

want	to	fetch	the	credits.So	we	create	a	cost	to	that	when	that	we	named	credits,	we	await	again	from	the	API	dot	fetch	credits.And	we	also	give	it	a	movie	ID.So	hopefully,	we	got	all	the	data	that	we	need	here	in	those	costs.But	we	want	to	do	some	stuff	here.And	that	is,	we	only	want	to	show	the	director	solely	because	if	we	look	at	the	finished
application,	and	we	go	back,	and	we	click	Whoa,	yeah,	there	you	have	it	encountered	two	children	with	the	same	Keith.And	this	is	what	happens	sometimes	with	this	API.And	I	really	don't	know	why.So	if	you	get	this	warning,	you	can	create	your	own	unique	key	somehow,	by	maybe	have	a	random	number	and	the	movie	ID,	I	don't	know,	you	can	do	it
in	many	different	ways.But	for	now,	it	doesn't	really	matter.So	we	have	the	movie	here.And	as	you	can	see,	here,	we	are	showing	the	directors,	we	need	to	get	the	directors	somehow	from	the	API.Because	from	the	API	and	the	credits,	we	get	something	back,	that's	called	crew.And	the	crew	contains	more	than	the	directors.So	we	have	to	filter	out	the
directors	to	just	get	the	directors	name.So	I	mark	it	with	get	directors	only.And	then	I	create	the	new	cast,	I	call	it	directors	equals	and	from	the	credits,	that's	the	one	up	here,	we	have	the	crew	properties.And	I'm	going	to	filter	this	one	filter	is	a	built	in	method	in	JavaScript,	we	have	a	member	a	crew	member.So	I'm	going	to	check	if	the	member	dot
job,	this	is	also	a	property	that	we	get	back	from	the	Movie	Database	API,	are	going	to	check	if	that	one	is	equal	to	director	with	a	capital	D.And	that	will	filter	out	all	the	directors	and	put	them	in	this	const.Or	format	it.And	then	we	have	all	the	data	that	we	need,	so	that	we	can	set	our	state,	so	we	call	sub	state,	that's	the	setter	for	our	state.In	this
case,	we	don't	need	to	use	a	previous	value.So	I'm	just	returning	an	object	here,	I	spread	out	the	movie.That's	the	data	that	we	got	back	here.So	we	spread	out	everything	from	that	one.And	then	we	have	a	property	that's	called	actors.And	I'm	going	to	give	it	the	credits	dot	cast.So	from	the	credits,	we	have	the	cast,	and	we	also	got	the	directors	from
the	crew.So	the	actors	is	a	property	that	I	create	myself	that	I	want	to	have	in	my	state.And	I'm	going	to	have	all	the	cast	inside	of	the	actors	property.And	the	last	one	is	going	to	be	the	directors,	there	can	be	more	than	one	director.So	that's	why	it's	called	directors	with	an	S.And	as	this	is	iOS	six	syntax,	we	just	need	to	type	out	this	it	will	create	it
like	this	automatically.Alright.Then	we're	going	to	set	loading	the	false	like	this.Auto	format	it	and	this	should	be	for	this	use	effect.Actually,	I	think	for	now,	we	need	to	return	something	from	our	hook	also.return	an	object	with	the	state	loading	and	error.Save	it	go	back	to	the	movie.js	file.We	can	see	if	it	works.So	down	here	I	marked	it	with	hook.I'm
going	to	import	use	movie	fetch	Rome	dot	dot	forward	slash	hooks	and	use	movie	fetch.And	then	we	can	try	out	our	hooked	and	see	if	we	get	some	data	back.So	at	the	top	of	our	component,	we	can	destructure	out	the	properties	that	we	exported	from	the	hooked	I	also	want	to	show	you	how	you	can	rename	something	when	you're	distracted.So	we
have	the	state	that	we	destructed,	and	we	have	a	colon,	and	I	want	to	call	it	movie	instead.So	that's	how	you	rename	it.And	then	we	destructor	out	loading	and	error.Then	we	call	or	use	movie	fetch	choked.And	we	also	want	to	give	it	the	movie	ID.But	we	haven't	really	got	the	movie	ID.So	how	do	we	get	it?	Then	I	create	the	component	itself	const	hero
image	capital	letters	h	n	i	equals	and	this	one	is	actually	going	to	receive	some	props.And	a	probe	is	something	that	you	can	send	into	component.So	that	component	can	change	dynamically,	depending	on	the	props,	a	prop	should	never	be	changed	inside	a	component	that	receives	the	props.So	they	can	only	change	if	something	rerun	this	and	they
get	a	new	prop.So	that's	how	that	works.And	the	props	is	sent	into	component	on	a	prop	object	like	this.So	we	have	the	Prop,	I	have	an	arrow	function.And	for	this	one,	I'm	just	going	to	return	JSX.So	I	can	make	an	implicit	return.So	I	have	parenthesis	so	I	can	skip	the	return	statement.And	then	I	have	my	wrapper.And	this	is	a	style	component,	we
scaffold	it	out	just	recently,	this	one	can	also	receive	a	prop.So	when	you	send	in	a	prop	to	a	component,	you	do	it	by	naming	the	prop	and	then	you	give	it	the	value.In	this	case,	it's	going	to	be	from	the	prop	that	this	component	get	prop.There's	going	to	be	a	prop	that	called	image.So	we	send	out	along	to	this	style	component,	that's	named
wrapper.And	in	the	next	video,	I'm	going	to	show	you	how	we	can	set	the	background	image	in	this	component	by	sending	in	the	image	URL	to	the	style	component	that's	named	wrapper.So	that's	what	I'm	doing	here.So	I'm	sending	this	URL	along	to	the	style	component	on	a	prop	that's	called	image	inside	this	wrapper,	we're	going	to	have	the
content.And	inside	the	content,	we're	going	to	have	the	text	like	this.And	inside	the	text,	we're	gonna	have	a	regular	h1	tag.And	in	JSX,	when	you	want	to	use	a	JavaScript	expression,	you	create	curly	brackets,	and	then	you	type	in	your	expression.In	our	case,	we	want	to	show	the	title.And	this	hero	image	is	going	to	receive	the	title	from	the	prop
that's	called	title	like	this,	and	you	end	it	with	a	curly	bracket.You	can	have	any	JavaScript	expression	inside	of	here	that	you	want.So	you	can	do	some	calculations	and	map	through	stuff	and	things	like	that,	that	we're	going	to	do	later	also	are	going	to	show	you	that	now	we	have	a	p	tag.Yet	again,	I	have	curly	brackets,	I	have	the	text	and	curly
brackets.And	that	one	is	from	the	prop	dot	txt.There's	more	formatting.And	then	I	export	default	hero	image.This	looks	fine,	actually.But	I	want	to	show	you	a	little	trick	here	now	that	you	should	use	when	you	create	your	components,	because	now	we	have	to	type	out	prop	dot	image	prop	dot	title	prop	dot	text.So	instead	you	can	use	e6	syntax	up
here	and	destructure	out	these	props	from	the	prop	object.So	we	have	parenthesis,	number	of	curly	brackets,	so	we	have	destruction	of	this	object.And	then	we	have	the	image,	title	and	the	text	And	then	we	can	remove	prop	here	on	all	of	these.So	I	think	you	should	get	used	to	always	doing	it	like	this	because	it	will	look	a	lot	more	cleaner	with	the
structure	mount	up	here.So	we	don't	have	to	type	in	prop	every	time.Alright,	save	the	component.And	just	as	usual,	we	can't	see	anything.Now	if	we	go	back	to	our	application,	because	we	haven't	used	the	component	yet,	save	it,	go	back	to	home.And	up	here,	where	I	marked	it	with	components,	we	import	hero	image	from	dot	forward	slash,	hero
image.And	now	we	can	use	this	component.So	below	here,	instead	of	homepage	and	this	div,	we	can	just	return	the	hero	image	like	this.But	we	want	to	send	along	some	props	to	this	one	also,	because	this	one	needs	the	title	and	stuff	like	that.And	we	also	need	to	check	that	we	actually	have	any	movies	in	the	state.So	we	can't	actually	do	it	like	this,
because	it	will	throw	an	error	if	we	don't	have	any	movies	in	that	array.So	what	we	can	do	here,	instead	it	we	return	something	here	inside	of	the	parenthesis,	because	we're	going	to	need	multiple	rows	to	move	this	one	inside	of	here,	instead.And	as	I	told	you	before,	we	can	only	return	one	parent	element	in	JSX.So	we	have	to	wrap	this	one	because
we'll	have	more	components	here	later.So	we	can	create	something	that's	called	a	fragment	in	react,	we	could	of	course,	create	a	div	like	this	and	move	this	one	inside.But	sometimes	we	don't	actually	want	to	create	a	div,	we	just	want	to	return	this	without	creating	a	div.And	you	can	do	that	by	creating	a	fragment.And	this	is	the	shorthand	for
fragments,	you	just	create	this	angle	brackets	and	an	end	angle	bracket.And	this	will	work.So	inside	of	here,	we	also	want	to	check	if	we	actually	have	some	results	in	the	state.So	just	as	before,	as	I	did	in	the	hero	image	itself,	if	you	can	see	are	in	the	JSX,	where	I	have	a	JavaScript	expression,	I	can	do	the	same	in	the	home.To	go	back	to	the	home,	I
have	a	curly	bracket,	and	now	I	can	use	any	JavaScript	expression	that	I	want.So	I	want	to	check	if	state	results.And	the	hero	image	is	going	to	be	the	first	movie,	it's	going	to	be	the	most	popular	movie.So	I	grabbed	the	first	element	in	the	array,	I	check	if	that	one	exists.And	then	I	do	something	that's	called	a	short	circuit.So	I	have	double
ampersands.And	I'm	going	to	move	this	column	bracket	to	the	end	of	here,	because	I	want	this	one	to	be	nested	inside	of	this	one.So	this	means	that	if	this	one	is	true,	it	will	run	this	code	here.If	it's	false,	it	will	just	fall	back.And	sometimes	some	argue	that	you	shouldn't	do	it	like	this,	because	it	will	return	the	actual	value	false	here,	but	JSX	won't
show	it.But	if	you	want,	you	could	instead	do	a	ternary	operator	like	this.So	if	this	one	is	true,	we	return	the	hero	image.And	then	we	have	colon	otherwise	we	return	null,	we	can	put	it	on	its	own	roll.And	this	will	also	work.And	we	want	to	give	this	theory	some	props.So	we	have	a	prop	of	image.And	that	one	is	going	to	equal.And	this	one	I	have	to
construct	because	the	image	URL	is	constructed	by	the	image	base	URL	that	we	that	we	get	here,	and	also	the	backdrop	size.So	I	have	backticks	in	dollar	sign	curly	brackets,	I'm	going	to	grab	the	image	base	URL	like	this.And	this	one	is	going	to	be	long,	so	I'm	going	to	remove	the	sidebar.So	this	is	a	template	literal.And	you	can	interpolate
expressions	like	this	in	a	string	literal.Alright,	then	I'm	going	to	add	the	backdrop	size,	like	this.And	then	I'm	going	to	add,	you	can	see	I	have	dollar	sign	and	curly	brackets	for	all	of	them	here,	dollar	sign	and	curly	brackets	again,	from	the	State	DOT	results,	I	grab	the	first	element	again.And	then	we	have	something	that's	called	backdrop,	underscore
path.Be	very	careful	about	the	spelling	here.So	you	get	that	correctly.It's	really,	really	easy	to	make	a	typo	here.And	then	it	won't	work.This	will	get	us	the	image	URL.And	these	ones	are	all	set	up	in	this	file	here.Let's	call	config.They	are	set	up	as	per	instructions	from	the	Movie	Database	API.You	can	see	the	image	base	URL	is	this	URL	here.So
that's	the	one	and	then	I	set	the	backdrop	size.You	can	change	this	size	if	you	want	and	try	it	here.You	can	make	them	smaller,	and	you	can	set	them	to	the	original	size.I	set	them	to	width	1280	in	this	case.So	that's	what	I'm	grabbing	here.And	I'm	generating	the	string	here	by	merging	them	together	in	this	template	literal	here.Right	now	we	have	the
title.And	we	get	that	one	from	state	auth	results.The	first	element	and	we	have	a	property	that's	called	original	underscore	title	like	this.And	then	we	have	the	text	yet	again	from	state	results.From	the	first	element,	you	could	also	break	this	out	in	its	own	variable	if	you	don't	want	to	type	this	in	every	time.So	there's	probably	been	a	lot	of	things	you
can	optimize	in	this	application.But	as	this	is	a	beginner	slash	intermediate	course,	I	don't	want	to	do	a	lot	of	stuff	like	this,	because	it	will	only	take	time.And	it	will	be	confusing	with	all	the	other	stuff	going	on.So	we	have	a	property	here,	that's	called	overview.And	these	are,	of	course,	all	from	the	Movie	Database	API	is	nothing	that	I	have
created.These	are	named	like	this	from	the	Movie	Database	API.All	right,	do	some	auto	formatting.So	you	can	see	here	I	send	in	three	props,	image,	title,	and	text.And	these	are	the	ones	that	I	destructed	out	in	this	component	itself.So	when	you	want	to	give	a	prop	two	a	component,	you	do	it	like	this,	you	named	the	Prop,	and	then	you	give	it	the
value.And	then	you	can	grab	those	props	inside	of	this	component.So	save	the	file,	go	back	to	the	browser,	and	you	can	see	that	we	can't	see	anything	yet.But	if	I	mark	it	here,	you	can	see	that	we	have	the	text.But	we	don't	actually	have	set	any	styling	for	this	one	yet.So	that's	what	we're	going	to	do	in	the	next	video.And	then	we'll	hopefully	see	this
nice	little	hero	image	in	our	application.It's	time	to	create	the	styles	for	the	hero	component.So	move	back	inside	of	the	code	editor,	and	the	file	that's	called	hero	image	dot	style	dot	j	s	that	we	created	in	the	last	video.So	we	have	all	these	components	here,	and	just	give	it	some	space	here.And	we're	going	to	start	with	a	wrapper,	and	to	the	wrapper,
we	send	in	a	prop.If	you	remember	this	one	here,	you	can	see	we	have	this	image	prop	here.So	just	as	we	do	with	regular	component,	we	can	send	him	props	to	style	component.And	this	is	something	that	is	super	great	with	style	components.Because	this	way,	we	can	do	some	stuff	with	a	CSS.And	in	our	case,	we	want	to	set	a	background	image,	the
usual	way	you	did	that	back	in	the	days	was	that	you	had	to	create	some	inline	CSS	when	you	had	a	dynamic	image.And	you	didn't	know	from	the	beginning	where	it	came	from,	or	what	didn't	what	his	name	was,	you	had	to	set	it	with	an	inline	styling	on	the	element	itself	in	the	HTML.But	in	this	case,	we	can	do	it	much,	much	cleaner	and	sending	a
prop	to	this	component.And	we	set	the	image	here.And	also	we're	going	to	create	if	you	look	here	at	the	finished	application.I	don't	know	if	you	see	it	now.But	there's	a	slight	little	gradient	down	here	also,	because	I	want	this	text	to	be	able	to	be	seen	on	any	different	background.That's	why	I	have	a	dark	little	gradient	below	this	text	here.So	that's
what	we're	also	going	to	create.So	in	the	repple	component,	we	have	this	div	that	we	styling	here	with	style	components.So	we	have	the	background.And	we're	going	to	set	a	linear	gradient	first	linear	gradient,	parenthesis,	and	is	going	to	go	to	bottom	RGB	a	and	I	use	this	because	I	want	to	set	the	alpha	value	0000.And	these	values	are	auto
generated	from	somewhere	on	the	internet,	I	usually	do	that	when	I	create	gradients,	it's	so	easy	to	just	go	there	and	type	in	your	gradient	and	it	will	give	you	the	code.So	that's	why	all	these	values	may	seem	a	little	bit	odd.This	one	is	39%.And	the	RGBA	is	going	to	be	0000	again,	and	41%,	rgba,	000	and	0.65.That's	the	alpha	value.And	I	see	you	know
that	this	one	shouldn't	even	need	to	have	to	have	these	ones	here.I	think	actually,	I	can	remove	this	one	here.We	don't	need	that	one.And	then	we	said	100%.And	just	after	the	parenthesis,	the	end	parenthesis,	we	have	a	comma.And	then	we	specify	the	URL.And	now	we	can	grab	that	prop	that	was	sent	in	here.And	you	do	that	as	this	is	a	template
literal,	just	as	before	we	use	dollar	sign	in	curly	brackets,	and	we	can	grab	those	props,	you	create	an	inline	function	and	this	one	will	get	called	with	the	props.And	from	the	props,	we	grab	the	image	and	if	you	want	to	destructure	amount,	you	can	do	that	also	here,	then	you	have	a	parenthesis	and	then	hold	the	object.Then	we	restructure	the
image.And	we	do	it	like	this.Right.Now	we	have	a	coma	from	the	variable,	regret	dot	Ray.And	hopefully	this	will	work.Do	some	auto	formatting	and	save	it	go	back	to	the	browser.And	you	can	see	that	we	actually	had	the	image	here	but	we	haven't	set	any	other	properties.So	that's	why	it	will	look	like	this.So	let's	go	back	here	and	we're	going	to	set
the	background	On	size	100%	and	cover,	we're	going	to	set	the	background	position	to	center	the	height	is	going	to	be	six	600	pixels.position	is	going	to	be	relative,	because	we're	going	to	absolute	position	or	text.So	that's	why	we	have	to	set	this	to	relative.And	we're	also	going	to	have	a	slight	animation	on	this	one.So	I	set	an	animation	that	are
going	to	call	animate	hero	image,	and	is	going	to	be	for	one	second.If	we	look	at	the	finished	here,	you	can	see	that	it	kind	of	fades	up.So	that's	the	animation	that	I'm	going	to	create.And	I	do	that	below	here.And	nested	inside	of	here.So	act	keyframes,	and	the	name	is	animate	hero	image.I	go	from	Opacity	is	going	to	be	zero	to	Opacity	is	going	to	be
one,	save	it,	go	back	and	see	what	we've	got.There	you	have	it,	there's	some	little	border	up	here.I	don't	know	why.Let's	see	if	it's	sort	itself	out	when	I	create	other	styles.But	you	can	see	that	it	it	animates	in	here	quite	smoothly.So	that's	great.Alright,	let's	fix	the	other	components.So	we	have	the	content,	padding	is	going	to	be	20	pixels	on	that	one,
we	set	a	max	width,	and	we	grabbed	from	our	variable	max	width.And	Morgan	is	going	to	be	zero	in	order	to	save	it,	let's	check	it	out,	you	can	see	that	it's	in	the	center	now.That's	great.And	that	one	removed	that	nasty	little	border	up	there	also,	that's	sweet.Then	we	have	the	text.Let's	create	that	one	also,	I	set	the	cell	index	200.Just	to	place	it	on
top,	I	set	the	max	with	the	700	pixels	on	this	text	position	is	going	to	be	absolute.from	bottom	we're	going	to	set	it	to	40	pixels	and	margin	right	is	going	to	be	20	pixels.The	min	height	is	going	to	be	100	pixels.And	the	color	is	going	to	be	from	the	variables	we	have	the	white.All	right,	so	that's	our	text.And	inside	we	have	the	h1	tag.So	for	that	one,	I
set	the	font	size.And	for	more	variables,	we	have	font,	super	big	camel	casing.And	then	I'm	going	to	have	a	media	query	on	this	one	media	screen.And	Max	course	I	have	to	end	this	way	to	see	my	colon	max	with	720	pixels.And	I	set	the	font	size	to	variable	dash	dash	formed	big,	so	I'm	making	it	slightly	smaller.Right,	that's	the	h1.Then	we	have	the	p
tag,	it's	gonna	have	a	font	size.From	the	variables,	we	grab	font	med.That's	the	medium	size.And	then	we	have	a	media	query	media	screen	and	you	set	the	max	with	the	720	pixels.For	that	one,	the	font	size	is	going	to	be	a	variable	font	small.So	this	means	of	course,	that	up	until	720	pixels,	we	will	use	the	form	small	otherwise	it	will	use	the	font
medium.And	the	same	goes	here,	we	use	the	font	big	up	until	720	pixels	otherwise	was	used	the	font	super	big.All	right,	then	we're	going	to	have	a	media	query	on	the	text	itself.So	media	screen	and	max	width	720	pixels.And	we	set	the	max	with	200%.And	there	may	be	room	for	optimization	in	the	CSS	because	I	haven't	put	the	most	focus	in	the	CSS
for	this	course,	as	this	is	a	course	in	react.But	I	wanted	to	show	you	how	to	create	the	CSS	also.So	that's	why	I	included	it.But	there	are	room	for	optimization	I'm	sure	of	that.Go	back	and	see	what	we	got	in	it.seems	to	be	working.Let's	see	what	happens.Yeah,	you	can	see	it	gets	smaller.And	that's	great.Now,	it's	actually	starting	to	get	fun	because
now	we	see	different	stuff	happening	here,	things	are	displaying	on	the	screen.And	that's	what	I	like	with	front	end	development	to	actually	see	it's	put	together	like	this.Alright,	in	the	next	video,	we're	going	to	create	the	logic	for	the	grid	component.So	we	have	our	hero	component,	and	the	next	component	would	be	the	actual	search	bar.But	I'm
going	to	save	that	one	for	later.So	we're	going	to	create	this	grid	now	instead,	in	this	video.So	let's	start	by	creating	a	logic	just	as	usual.And	in	the	next	video,	we	create	the	styles,	go	back	to	the	code	editor.And	inside	the	components	create	a	new	folder,	that's	called	grid.And	inside	the	grid,	create	a	new	file	that's	called	index	dot	j	s.And	another	file
is	called	grid	dot	styles	dot	j,	s	and	capital	G	on	the	grid,	of	course,	and	just	as	before,	we're	going	to	be	in	the	grid	dot	styles	dot	j	s	first	to	create	the	placeholders	for	the	style	components.So	import	styled	from	styled	components,	then	we	export	the	columns	that	we	call	wrapper.And	as	you	can	see	here,	this	is	great	with	starter	components,
because	I	named	them	the	same,	but	it	doesn't	matter,	they	will	be	scoped	to	that	component.So	we	can	have	this	exact	same	name.That's	super	sweet.So	the	styles	won't	interfere	with	each	other.So	style	dot	div,	double	backticks.And	then	we	export	const	content,	and	that	equals	A	styled	dot	Dave,	also	n	double	backticks,	save	it	and	go	inside	of	the
index.js	file.So	we	import	react	from	react,	hopefully	you're	starting	to	learn	is	now	so	this	will	be	in	your	muscle	memory	later.Then	we	have	the	styles,	we	import	the	wrapper,	and	the	content	from	dot	forward	slash	grid	styles.Then	we	create	a	component	itself	const	grid	equals,	and	I'm	going	to	destructure	or	two	props	that	we're	going	to	send	into
this	one.So	header	and	children.I	have	an	arrow	function,	and	I'm	going	to	do	an	implicit	return.And	you	may	wonder	what	children	is.And	that	is	a	default	prop	that	we	can	use	in	react.When	we	nest	stuff	inside	a	component,	they	will	be	accessible	in	the	children	prop.So	that's	great,	I'm	going	to	show	you	how	that	works	in	a	second,	we're	going	to
have	a	wrapper.Then	we	have	an	h1	tag.And	then	I	have	curly	brackets	because	I'm	going	to	grab	the	header	prop	and	display	that	here.Then	we	have	the	content.And	for	that	one,	I	create	another	curly	bracket,	and	I	grab	the	children.So	that	means	that	whatever	I	wrap	inside	of	this	component,	when	I	use	it,	I	can	display	it	here	by	displaying	the
children,	then	we	need	to	export	default	grid	like	this	and	save	it.So	this	is	pretty	much	it	for	the	grid	component.If	we	go	back	to	the	home.js	file,	we	can	import	it	up	here.Import	grid	from	dot	forward	slash	grid.And	then	just	below	here	below	the	hero	image,	I'm	going	to	use	the	grid	here.And	this	one	is	going	to	get	one	prop	is	the	header	equals
popular	movies.So	inside	the	grid,	I'm	going	to	map	through	all	of	the	movies	in	the	state.So	I	have	curly	brackets	and	State	DOT	results.I	map	that's	also	a	sixth	syntax,	we	have	a	movie.In	this	inline	function,	I	can	make	an	implicit	return.So	I	have	parenthesis.And	I	use	a	lot	of	e6	syntax	here	as	you	can	see,	and	hopefully	you	know	a	bit	about	it
before	you	start	this	course	because	it	will	be	too	long	of	a	course	if	I	explain	every	little	syntax	in	detail,	but	I	try	to	explain	some	stuff	for	you.And	hopefully,	you'll	learn	a	lot	also	from	it.But	the	map	method	is	something	you	can	use	instead	of	a	for	loop.So	use	the	map	on	the	array,	the	results	array,	and	it	will	map	to	each	item	in	the	array.We
haven't	created	a	thumbnail	yet.So	we're	going	to	create	a	div.And	I	think	we	have	a	property	that's	called	title.So	I	map	through	every	movie	and	now	I'm	just	going	to	show	a	div	in	the	grid	that	shows	us	the	movie	title.Or	format	it	save	it	go	back	to	the	application.And	you	can	see	that	we	have	all	the	movies	here	so	displaying	the	title,	and	you	can
see	that	it	also	warns	us	now	each	child	in	a	list	should	have	a	unique	key	prop	That's	when	we	map	through	things,	we	have	to	market	with	a	key	also	otherwise,	React	will	complain.React	is	using	this	internally	to	diff	stuff	and	to	optimize	itself.So	we	can	set	a	key	on	this	one.And	we're	going	to	give	it	the	movie.id.So	this	is	a	unique	ID	that	we	get
from	the	Movie	Database	API,	it's	sometimes	return	two	of	the	same	movie,	and	this	one	will	actually	give	a	warning	done.So	it's	some	bug	in	the	API,	I	think,	because	it	should	only	return	one	of	each	movie.So	if	it	gives	you	a	warning,	it's	probably	that	because	it	has	probably	returned	more	than	one	of	the	same	movie.So	you	could	actually	add
something	else,	you	could	add	a	random	number,	also	to	the	movie	ID	if	you	have	that	problem.So	let's	go	back	to	the	application.And	you	can	see	that	it	doesn't	complain	now.So	now	it's	happy,	we	have	provided	a	unique	key.And	that's	super	great.And	we	have	the	titles,	but	it	looks	like	crap.Now	because	we	haven't	styled	it	and	we	haven't	created
the	thumbnails	yet.In	the	next	video,	we're	going	to	style	the	grid	itself,	and	then	we're	going	to	create	the	thumbnails.So	we	have	our	grid,	but	we	have	to	style	it	also.And	that's	what	we're	going	to	do	in	this	video.Move	back	to	the	code	editor	and	in	the	file	that's	called	grid	doc	stars	dot	j	s	in	the	grid	folder,	we	have	already	created	this	one	here.So
we're	just	going	to	fill	them	up	with	CSS.And	also	I	can	tell	you,	if	you	don't	have	that	plugin	installed	in	Visual	Studio	code,	I	have	a	plugin	that's	called	VS	code	dash	style	dash	components.So	that's	the	one	that's	create	this	nice	syntax	highlighting	inside	of	this	style	components.So	that's	a	little	tip	if	you	haven't	installed	that	one.Alright,	so	let's
create	the	stars	for	the	wrapper.First,	we're	going	to	set	the	max	width	from	our	variable	that's	called	max	width.Then	we	set	the	margin	to	zero	auto,	that	will	center	the	div,	and	we	give	it	some	padding	zero	and	20	pixels	that's	padding	on	the	sides.And	then	we	have	the	h1	tag,	I'm	going	to	set	the	color	from	the	variable	mid	gray	on	that	one.And
then	also,	I'm	going	to	have	a	media	query.So	at	media	screen,	and	Max	dash	with	768	pixels.And	this	one	is	going	to	change	the	font	size	from	the	variable	font	big.Alright,	save	it	go	back	to	the	browser.And	you	can	see	that	we	have	this	nice	Morgan's	here,	but	we	haven't	actually	created	a	grid	yet.So	that's	what	we're	going	to	do	next.Inside	the
content	component,	we're	going	to	display	a	grid.Then	we	set	something	that's	called	grid	template	columns,	grid	dash	template	dash	columns,	we're	going	to	set	this	one	to	repeat.And	this	is	a	little	trick	you	can	use	if	you	want	to	create	a	responsive	grid,	so	we	repeat	these	columns,	we	set	it	to	auto	fill	a	coma,	and	then	we	use	the	min	max	200
pixels,	that's	the	minimum	width	that	those	little	thumbnails	can	have.And	then	we	set	it	to	one	fragment,	so	we	don't	specify	an	exact	pixel	width	on	the	max	value.And	this	is	CSS	Grid	syntax.And	the	CSS	Grid	will	probably	require	a	complete	course	on	its	own.So	I'm	not	going	to	go	there.Grid	gap,	we're	going	to	set	that	one	to	two	REM	so	that	will
give	it	some	spacing	between	the	rows	and	the	columns,	save	it,	go	back	to	the	browser,	and	you	can	see	that	we	have	our	grid.So	now	it's	showing	us	five	items	on	each	row.If	we	do	like	this,	you	can	see	that	it	is	responsive.And	that's	super	great.That's	a	neat	trick	you	can	use	if	you	have	a	grid	like	this,	just	with	one	row	in	CSS	Grid,	you	can	make	it
fully	responsive.So	that	is	really,	really	cool,	actually.And	it	works	because	we	set	this	one	to	repeat	the	columns,	and	we	set	it	to	autofill.And	then	we	set	a	min	and	max	value.So	we're	telling	it	when	it's	200	pixels	wide,	it	can't	go	lower.So	then	it	removes	one	column	instead.And	it's	going	to	do	that	all	the	way	down	to	the	mobile	devices.All	right,
that's	the	styling	for	the	grid.It	was	pretty	fast.I	think.In	the	next	video,	we're	going	to	start	creating	the	thumbnails.We	have	the	grid	now,	but	we	haven't	created	the	thumbnails	for	the	movies.So	that's	what	we're	going	to	do	next.Move	back	inside	of	the	code	editor	and	inside	the	components	folder,	create	a	new	folder	that	you	call	thumb,	capital	T
inside	of	that	folder,	you	create	a	new	file	that's	called	index	dot	j	s.And	then	you	create	another	file	that's	called	thumb	dot	styles,	dot	j	s,	I	hope	you're	beginning	to	see	the	pattern	here	on	how	I	structure	the	components.So	first,	we're	going	to	start	in	the	thumb	dot	style	dot	j	s,	just	as	before.So	we	import	styled	from	styled	components.And	for	this
one,	we're	only	gonna	have	one	component.So	export	const.Image	capitalized.And	this	one	is	going	to	be	styled	dot	IMG	because	we	styling	the	image	here.Right,	save	it	and	go	back	to	the	index.js	file	or	the	thumb.So	first,	we	import	react	from	react.Then	we	mark	it	with	styles	an	import	image	from	dot	forward	slash	thumb	styles.We're	going	to
import	some	more	stuff	here	later,	because	these	thumbnails	are	going	to	be	clickable,	we're	going	to	create	that	later	when	we	have	set	up	the	routing,	and	also	started	to	create	our	movie	page.So	for	now,	we	create	our	thumb	component,	cost	thumb	equals,	I'm	going	to	destructure	out	an	image	prop	movie	ID	and	clickable,	I	make	an	implicit
return	on	this	one,	because	I'm	only	going	to	return	JSX.For	this	one,	I'm	going	to	have	a	wrapping	div,	like	this.And	then	we're	going	to	use	this	prop	to	tell	if	it's	clickable	or	not.And	then	we're	going	to	have	a	ternary	operator	here.But	for	now,	we're	just	going	to	return	an	image.That's	the	image	that	we	created	here.The	source	is	going	to	be	wrong
the	image	prop.Eric	is	that	an	old	of	movie	thumb	on	that	one.With	self,	close	it.And	then	down	below	here,	we	export	default,	some	save	the	file,	then	we're	going	to	go	back	to	the	home	component	and	also	import	this	one.So	up	here,	import	some	from	dot	forward	slash	thumb.Alright,	and	below	here,	where	we	map	through	all	of	the	movies,	we're
going	to	use	a	thumb	instead	of	this	div,	remove	this	one	here,	and	we	use	the	sum,	then	we're	gonna	have	a	key	for	this	one	also,	because	we	always	need	to	have	a	key	when	we	are	mapping	through	components	like	this	and	display	them.So	the	key	is	going	to	be	just	as	before	the	movie.id	we're	going	to	set	it	to	clickable,	that's	going	to	be	true,	it's
always	default	to	true.So	you	don't	have	to	do	this,	if	you	want	to	set	it	to	true.For	now	that	one	isn't	working,	because	we	didn't	utilize	it	in	the	component	itself.But	we're	going	to	fix	that	later.Then	we	have	the	image	prop	and	we're	going	to	give	it	the	URL	to	the	image.And	for	this	one,	we're	also	going	to	use	that	fallback	image	if	we	don't	have	any
image	for	the	movie.So	we're	gonna	have	a	taller	operator	here,	movie	dot	poster	underscore	path.So	we're	checking	if	we	have	imposed	a	path	if	we	don't	have	that	we're	going	to	display	the	fallback	image.But	if	we	have	this	path,	we	know	that	we	can	grab	that	image.So	we	have	a	question	mark.I'm	typing	it	on	another	row	here,	but	it's	the	regular
ternary	operator.Then	we	have	the	image	base	URL.And	I'm	actually	going	to	show	you	the	other	way	now	not	do	it	like	this	here.But	you	can	do	it	the	old	way	with	plus,	instead,	where	the	poster	size,	and	then	we	have	the	movie	dot	poster	path,	movie	dot	poster	underscore	path.Be	very	careful	with	the	spelling,	it's	very	easy	to	make	a	little	typo
here.And	that	will	break	everything.Alright,	so	that	is	when	we	have	a	poster	path,	then	we	have	the	colon.And	we're	going	to	display	the	no	image	if	we	don't	have	a	poster	path.So	that's	the	image,	then	we're	going	to	send	in	the	movie	ID.And	that	is	because	when	we	click	on	a	thumbnail,	we	need	to	have	the	movie	ID	for	that	thumbnail.So	we	know
what	movie	to	grab	and	display	on	the	individual	movie	page.So	movie.id	and	then	we're	going	to	close	the	thumb	component.So	be	very	careful	here.It's	a	little	bit	nested.And	it's	very	easy	to	type	something	wrong	here.But	this	should	be	right	i	think	i	really	hope	so.I	save	it	back	to	the	browser.And	as	you	can	see	we	have	the	thumbnails	but	it
doesn't	look	right.And	that's	because	I	haven't	styled	them	yet.But	at	least	we	display	something.So	in	the	next	video,	we're	going	to	start	the	thumbnails	some	to	make	it	look	something	like	this	instead.Really	pretty	modern.I	hope	Okay,	we	soon	have	a	grid	with	nice	little	thumbnails,	we	just	have	to	style	the	thumb	component	itself.Inside	the
thumbnail	styles	dot	j	s,	we	already	created	this	one,	we're	going	to	style	it	inside	of	the	image	style	component.So	we're	going	to	set	the	width	to	100%.The	max	width	is	going	to	be	720	pixels,	transition,	all	0.3	seconds.And	that	is	because	I	want	some	nice	transition	on	hover.Objects	object	dash	fit	is	going	to	be	cover	border	dash	radius	is	going	to
be	20	pixels.And	the	cover	here	will	center	the	image	and	make	it	fit	nicely	into	the	thumbnail.So	that's	a	really	handy	little	rule	you	can	use	in	CSS	for	stuff	like	that.I	also	got	to	have	an	animation	on	this	one	because	I	want	it	to	fade	up,	we	can	actually	look	at	that	in	the	finished	application.You	know,	you	can	see	here	that	these	thumbnails	are	also
fading	up	just	as	the	hero	image.That's	what	I	wanted	animation	for.So	I	call	it	animate	thumb.0.5	seconds.So	we're	going	to	create	that	animation.So	add	keyframes	and	animate	them.Right	from	a	set	the	opacity	to	02.It's	going	to	be	opacity	one,	that's	the	animation.And	then	I	also	want	to	set	the	hover	effect.So	colon	hover	like	this.And	I	said	to
pacity	to	0.8,	there's	an	auto	formatting	and	save	it	back	to	the	application.And	as	you	can	see,	it's	looking	great.So	that's	nice,	it's	working,	it's	starting	to	look	like	something,	we	can	compare	it	to	this	one	here,	and	it	looks	exactly	the	same	without	the	search	bar.So	we	have	a	few	things	left	to	do,	we	have	to	create	the	spinner	also	when	we	loading
and	the	search	bar	and	the	bottom	for	loading	more.In	the	next	video,	we're	actually	going	to	create	the	spinner	component.So	we	have	that	ready	when	we	want	to	show	it	when	we're	fetching	more.Okay,	we	have	our	hero	image	on	our	grid.So	we're	going	to	create	the	spinner	in	this	video.Back	inside	of	the	code	editor	and	the	components	folder,
and	inside	a	components	folder,	create	a	new	folder	that	we	call	spinner.And	then	we	create	a	file,	let's	call	index	dot	j	s	and	another	file.Let's	call	spinner	dot	styles,	dot	j	s,	it's	been	beginning	to	be	a	little	bit	repetitive	here.But	as	I	said	so	many	times	before	now	is	always	great	to	repeat	stuff	when	you	learn	it.So	even	if	it's	boring,	it's	better	to
repeat	it,	because	then	it	will	be	in	your	muscle	memory	later.So	that's	why	I	repeat	a	lot	of	stuff	also	in	this	course.And	this	one	is	a	little	bit	special	actually	because	we	have	the	component	itself	in	the	index.js	file,	but	the	component	is	really	just	going	to	be	a	styled	component.So	in	this	index.js	file,	we're	just	going	to	import	the	start	component	in
this	file.So	we	can	create	this	actually	in	this	video	and	then	we	import	it	and	then	it	will	be	finished.So	in	the	spinner.styles.js	file,	we	import	styled	from	styled	components.We	export	a	const	that	we	named	spinner,	and	it	equals	A	styled	dot	div	double	backticks	and	inside	the	backticks	we	write	our	CSS,	we	set	the	border	to	five	pixels	solid.And	we
have	the	variable	of	light	gray.We	set	the	border	dash	top	to	five	pixels	solid	with	a	variable	dash	dash	med	gray.We	set	the	border	dash	radius	to	50%	because	this	one	is	going	to	be	a	circle	so	that's	why	the	width	is	going	to	be	50	pixels	and	the	height	is	also	going	to	be	50	pixels.We	have	an	animation	on	this	one	also.We	call	it	spin	0.8	seconds	is
going	to	be	a	linear	animation	and	is	going	to	be	infinite.That	was	at	the	Morgan	220	pixels.All	right,	then	we	create	an	animation	at	keyframes.Spin	we	go	from	0%	Transform.we	rotated	Cyril	degree,	here,	I'm	using	PreSonus	data.So	you	can	use	whatever	you	want.We	didn't	do	that	in	the	thumb	styles	I'm	using	from	two	in	that	one	instead.So	I	like
to	change	stuff	a	little	bit	when	I	create	courses	like	this	so	that	you	see	that	you	can	create	it	in	many	different	ways.So	here,	I'm	using	percent	instead.And	it	should	say,	transform,	not	Transform,	transform,	and	rotate	zero	degrees,	and	it	will	see	my	colon.And	then	we	go	to	100%.And	the	transform	is	going	to	be	rotate	360	degrees,	some	auto
formatting,	and	save	it.Then	we	go	back	to	the	index.js	file	in	the	spinner	folder.And	for	this	one,	we	just	import	the	spinner	that	we	created	a	style	component.So	from	dot	forward	slash	spinner	dot	styles.And	then	we	export	it,	export	default	spinner.So	that's	it	for	this	component,	we	can	actually	see	if	it	works	also.So	go	back	to	the	home	page
home.js,	we	import	it	first	here.Imports	spinner	from	dot	forward	slash	spinner.Alright,	and	then	here	just	below	the	grid,	we	can	place	the	spinner	and	also	a	soy,	we	don't	actually	need	the	use	state	and	use	effect	here	more	so	we	can	delete	those	ones	also	save	the	file,	go	back	to	the	browser.And	as	you	can	see,	just	below	here,	it's	spinning	like
crazy.And	of	course,	it's	only	going	to	be	shown	when	we	fetch	data	from	the	API.But	for	now,	we're	showing	it	all	the	time,	but	we're	going	to	fix	that	later.So	that's	how	you	create	a	really	simple	spinner	with	some	CSS	and	style	components	in	react.In	the	next	video,	we're	going	to	start	creating	the	search	bar.So	we	created	a	grid	with	a	thumbs
and	we	have	our	hero	image	and	we	want	to	create	our	search	bar.Next,	if	we	look	at	the	search	bar	in	the	finished	application,	we	can	see	that	we	have	this	nice	little	icon	here	and	I	created	this	myself,	first	I	had	an	icon	from	Font	Awesome.But	then	I	thought	maybe	we	shouldn't	import	the	whole	Font	Awesome	library	just	to	have	one	outcome.So
that's	why	I	created	an	SVG	image	instead.And	then	it	says	search	movie,	and	then	we	can	type	in	something	to	search	for	in	here.So	this	is	how	it	works.So	let's	go	back	to	our	code.And	inside	a	component	folder,	create	a	new	folder,	that's	called	search	bar,	capital	S,	capital	B.And	inside	of	that	folder,	you	probably	guessed	it,	we	create	a	file,	let's
call	it	index	dot	j	s,	and	a	file	that's	called	search	bar	dot	styles.dot	j	s.And	we	do	as	we	always	do,	we're	going	to	be	in	the	search	bar	dot	styles	dot	j	s,	and	we're	going	to	scaffold	out	the	style	components	import	style,	from	style	components,	then	we	export	a	const,	called	wrapper.And	he's	going	to	equal	a	style	of	theme.And	we	have	double
backticks.And	we	export,	not	triple	backticks	double	backticks	and	a	semi	colon,	then	we	export	the	course	that	called	content.It's	going	to	equal	style	dot	div,	double	backticks	and	a	semi	colon,	save	it	go	back	to	the	index.js	in	the	search	bar	folder,	we	import	react	coma,	we're	also	going	to	import	a	few	other	stuff	here,	we're	going	to	need	to	use
state	we're	going	to	need	to	use	effect.And	we're	also	going	to	need	to	use	ref	this	one.And	we	import	it	from	react.So	why	do	I	need	these	things?	export	const?	probably	guessed	it,	it's	going	to	be	forward	slash	because	we	want	to	link	to	the	home	page.This	is	the	first	element	in	the	breadcrumb	menu.So	we're	going	to	have	a	regular	span	here.And
it's	going	to	say	home.So	that's	the	first	one,	then	after	the	link,	we	create	another	span.And	we're	going	to	have	a	pipe	like	this,	I	think	it's	option	seven	on	Mac.Yeah,	option	seven.Or	you	can	have	whatever	you	want	inside	of	there.But	I'd	like	to	have	that	as	a	divider.And	then	we	have	the	last	span	and	that's	it's	going	to	be	the	movie	title.Do	some
more	formatting.And	then	we	need	to	export	default	this	one	also.Next	export	default	breadcrumb,	right.So	this	is	going	to	be	a	two	level	breadcrumb,	we	only	have	the	home	button	to	click	on	to	go	back	to	the	home	page.And	then	we	show	the	movie	title,	save	the	file	and	then	go	back	to	the	movie.js	file.Up	here	where	we	have	the	component
imports,	we	import	breadcrumbed	from	dot	forward	slash	breadcrumb.Right.Now	we	can	use	it	down	here	in	our	JSX.One	thing	we	can	do	first	is	that	we	can	return	something	here,	if	we	loading.So	if	loading	return,	we're	going	to	return	the	spinner	if	we're	loading	something,	which	we	are	going	to	do	initially.And	if	we	have	an	error,	return	a	div
that	says	something	went	wrong,	or	something	else	if	you	want	that.So	this	will	make	sure	that	we	show	the	loading	spinner	initially	when	we	load	in	all	the	data	for	the	movie.And	if	we	have	an	error,	we	want	to	show	that	JSX	down	here,	I	don't	know	why	it's	a	spinner,	you	know,	and	deleted.Alright,	so	instead	of	the	movie	here,	I'm	going	to	remove
this	one,	and	I'm	going	to	use	my	breadcrumb	and	it	has	a	prop	that's	called	movie	title.For	that	one,	I'm	going	to	give	it	a	movie	dot	original	underscore	title.And	I	close	the	component	like	that,	save	it	and	go	back	to	the	browser	and	click	a	movie	and	you	can	see	that	we	have	our	bread	crumb	here.It	looks	like	crap	but	we're	going	to	style	it	in	the
next	video	so	don't	worry.And	it	seems	to	be	working	here	with	a	title	and	everything	and	we	can	click	the	home	button	to	get	back	to	the	home	page.That's	not	so	in	the	next	video.We're	going	to	give	it	some	styling.Alright	time	to	give	this	little	breadcrumbs,	some	styles	and	we	do	that	inside	of	the	breadcrumb	dot	styles	file.We	have	components
inside	of	that	one,	we	have	the	wrapper	and	the	content.So	let's	start	by	styling	the	wrapper,	I'm	going	to	display	it	as	a	flex	align	items	is	going	to	be	center	and	justify	content	is	also	going	to	be	center.I	set	the	width	100%	The	height	is	going	to	be	70	pixels.And	the	background	is	going	to	be	from	the	variable	that's	called	matte	gray.And	the	color	is
going	to	be	also	from	a	variable	but	that's	the	white	one.Save	it	go	back	and	see	what	we've	got	so	far.You	can	see	that	we	have	it	here	but	it	looks	not	good	now,	so	we	have	to	fix	this	also.And	that's	the	one	here	does	the	content.So	the	content	was	set	at	one	also	to	flex	display	flex.The	width	is	going	to	be	100%.The	max	width	on	this	one	is	going	to
be	from	the	variable	max	width	and	the	padding	is	going	to	be	zero	and	20	pixels.Then	we	have	the	span	element	inside	our	breadcrumbs,	we're	going	to	style	up	one	also	span	we	set	the	font	size.What	do	we	have	in	the	global	style	here	in	the	root?	Well,	the	state	we're	going	to	use	to	create	what's	called	a	control	component.And	that	means	that
we're	going	to	have	our	input	field	but	it's	going	to	be	controlled	by	react,	the	input	field	is	going	to	be	based	on	the	value	in	the	state.We're	going	to	use	the	use	effect	to	trigger	when	this	local	state	changes.And	then	we're	going	to	update	the	search	term	so	that	it	will	fetch	new	movies	from	the	API.And	use	ref	is	going	to	be	used	to	show	you	a	little
trick	that	we	can	use	if	we	don't	want	to	do	something	in	the	use	effect	on	the	initial	render.So	then	we're	going	to	import	the	image	that's	going	to	be	that	little	icon	I	showed	you.So	import	search	icon,	camel	casing	from	dot	dot	forward	slash	dot	forward	slash	again,	images	and	we	have	something	that's	called	search	dash	icon	dot	SVG.Don't	miss
the	file	extension	there.Then	we	have	the	styles,	the	import,	curly	brackets,	wrapper	and	content	from	dot	forward	slash	sport	dot	styles.All	right,	so	that's	our	imports.And	then	we	create	a	component	const	search	bar,	capital	S	capital	V	equals,	and	we're	going	to	destructure	out	the	prop	that's	going	to	be	set	search	term	camel	cased	by	a
narrow.Now	for	this	one,	we're	going	to	make	an	explicit	return	because	we	want	to	have	some	logic	in	it.So	we	have	a	return	statement,	parenthesis.Now	we	have	our	wrapper.And	inside	a	wrapper,	we're	going	to	have	our	content	like	this.So	the	first	thing	we	need	is	the	icon	and	it's	going	to	be	an	image.So	image	SRC	is	going	to	be	the	search
icon.We	can	set	an	author	on	that	one,	also	search	dash	icon	with	self,	close	it	like	this,	just	a	regular	img	tag,	then	we're	going	to	have	an	input	field.And	it's	going	to	be	a	type	text.We're	going	to	have	a	placeholder.Let's	go	going	to	be	searched	movie.And	then	we're	going	to	have	an	on	change	handler	and	value.But	for	now,	I'm	just	going	to	surf
close	this.And	to	do	some	auto	formatting	and	export	this	component,	export	default	search	bar.And	then	we're	going	to	import	it	in	the	home	component	just	to	see	that	we	got	something	here.So	go	back	to	the	home,	and	close	all	this,	go	back	to	the	home.And	just	below	the	hero	image,	we're	going	to	place	that	component	But	first,	we	need	to
import	it.So	import	search	bar	from	dot	forward	slash	search	bar	right	down	below	the	hero	image	just	above	the	grid,	we	can	place	a	search	bar,	save	it	go	back	to	the	browser.And	you	can	see	that	we	have	our	input	field	here.But	we	haven't	started	yet,	of	course.So	hopefully	it's	gonna	look	something	like	this,	when	we're	finished,	go	back	to	the
code	and	the	search	bar	in	index.js	file,	we're	going	to	make	this	what's	called	a	controlled	component,	a	controlled	component	in	react	is	a	component	that	react	control.So	the	input	value	is	going	to	be	based	on	a	state	that	we	create.And	when	that	state	changes,	it	also	changes	the	value	in	the	input	box.And	this	is	great	because	then	we	know	that
our	state	is	in	sync	with	the	actual	value	in	the	input	field.We	create	a	state	of	here	const,	we	can	call	it	state	and	set	state	equals	use	state.And	it's	going	to	be	an	empty	string	for	stores.On	our	input	field,	it's	all	formatted	them	like	this,	I	want	to	have	them	like	this,	instead,	we're	gonna	have	an	on	change	handler	equals,	and	for	this	one,	I	want	to
create	an	inline	function,	you	could	also	create	a	function	up	here	for	that	one	if	you	want	to	do	that	instead.But	I	want	to	show	you	how	to	do	things	differently.So	in	this	case,	I	created	an	inline	function,	we	have	the	event,	or	you	can	just	type	in	E,	for	example,	you	can	name	it	whatever	you	want,	then	we	set	the	state	with	the	event	dot	turn	target
dot	value,	and	this	will	give	us	the	value	in	the	input	field.And	we	need	to	have	this	inline	function	as	we	are	actually	invoking	this	function	here	with	that	value,	otherwise,	it	won't	work.So	by	having	this	inline	function,	we	can	provide	this	one	with	value.So	that's	why	you	have	this	inline	function.Otherwise,	it	will	run	this	function	instantly.And	that's
no	good.So	if	we,	for	example,	had	a	function	that	we	didn't	want	to	send	in	some	arguments	to	that	we	just	want	to	trigger	on	change,	we	can	have	it	like	this	instead.And	that	will	work	but	in	this	case,	we	want	to	send	in	the	argument	or	the	current	value.So	that's	why	we	have	this	inline	function.Alright,	so	that's	the	unchanged	and	then	we	set	the
value	to	the	state.And	there	we	have	successfully	created	a	control	component.We	can	see	if	it	works,	go	back	to	the	browser,	type	something	in	and	you	can	see	the	value	here	now	is	controlled	by	react.As	soon	as	we	set	this	value	to	some	state	value	here,	we	are	making	this	a	control	component.And	every	time	it	changes,	it's	going	to	trigger	reset
state	and	it	gets	the	value	here	and	replace	the	value	from	the	text	input.In	the	state,	and	then	the	value	is	displayed	in	the	textbox	itself.So	it's	kind	of	a	closed	circle	here	on	how	things	work.It	goes	around	in	this	way.Now	we	have	our	input	field,	but	we	want	something	to	happen.Also,	we	want	to	set	the	search	term	that	we're	going	to	create	in	our
hook	that	we	created	before.So	we	actually	going	to	create	a	new	state	inside	of	use	home	fetch.So	up	here	in	the	US	home	fetch	hook,	we're	going	to	create	a	cost,	call	it	search	term	capital	T,	and	set	search	term,	then	it's	going	to	equal	use	state.And	we'll	set	it	as	an	empty	string	initially,	then	we	also	need	to	export	this	one.So	export	it	down
here.And	we	only	need	a	setter	for	this	one.So	we	can	export	the	set	search	term	like	this,	save	the	file,	go	back	to	the	home.js.And	up	here,	where	we	where	we	use	or	use	home	fetch	hooked,	we	can	destructure	out	the	set	search	search	term,	the	set	search	term	arrived.And	this	one	is	going	to	be	the	prop	for	our	search	bar.So	I'm	going	to	call	this
prop	set	search	term	also.You	can	call	it	whatever	you	want.And	then	I	give	it	to	set	search	term.So	this	way,	we	pass	this	along	down	to	our	component	to	the	search	bar,	so	that	we	can	use	it	in	the	search	bar.So	when	this	one	triggers	when	we	set	the	search	term	is	going	to	trigger	here.So	actually	changing	the	state	in	our	hook	here.That's	exactly
what	we	want,	because	then	we	can	use	it	in	our	hook	when	we	fetch	stuff.But	in	this	case,	we	want	to	have	a	slight	delay	when	the	user	types	something	in	before	it	tries	to	fetch	the	data,	we	can	look	here	in	the	finished	application,	you	can	see	when	I	type	something	in	here,	that	I	have	a	slight	delay,	otherwise,	it	wouldn't	be	a	good	user	experience
if	it	just	instantly	started	to	fetch	data.So	that's	why	I	do	it	this	way	instead,	otherwise,	we	could	have	used	this	state	to	actually	fetch	the	data.But	in	our	case,	we	want	a	slight	delay.And	then	we	set	the	search	term	that	we're	going	to	use	for	fetching.So	that's	why	I	have	dual	states	for	this	one.So	let's	create	a	use	effect	in	the	search	bar	use
effect.We	have	an	inline	arrow	function	just	as	before.And	we	have	the	dependency	array.And	we're	going	to	fill	it	out	in	a	second.I'm	going	to	show	you	how	to	create	a	timeout	in	react	now	and	how	we	can	use	it	in	a	use	effect.So	first	we	create	a	timer.We	use	the	set	timeout	that's	built	in	JavaScript,	we	have	an	inline	function	for	that	one.And	then
we're	going	to	call	the	set	search	term.That's	the	one	that	we	created.And	we're	going	to	give	it	the	state	like	this.And	I'm	going	to	set	it	to	half	a	second,	that's	400	milliseconds.So	this	one	will	trigger	after	500	milliseconds.If	you	want	some	other	value,	you	can	of	course	type	that	in	instead.And	you	can	see	here	now	that	it	instantly	complains,
because	we	haven't	specified	this	as	a	dependency.So	we	specify	and	set	search	term	as	a	dependency.And	it	also	complains,	because	it	needs	the	state,	that's	also	dependency	to	this	use	effect.So	this	linting	rules	are	actually	really	good.It	tells	us	stuff	so	that	it	is	so	that	we	actually	do	this	correctly.And	we	should	always	specify	the	dependencies
and	handle	it	inside	of	the	use	effect	if	we	need	to.Alright,	but	there's	one	more	important	thing	we	have	to	do	with	the	timer.And	that	is	declared	a	timer	on	each	render,	because	otherwise,	it	will	just	create	a	lot	of	timers.And	that's	no	good.And	there's	a	handy	little	thing	with	the	use	effect	that	we	can	use	for	this.Because	if	we	return	a	function	in
the	use	effect,	so	every	time	before	a	new	render,	it	will	trigger	this	function.So	we	can	clear	our	timeout	inside	of	that	function.And	this	will	take	care	of	that	we	clean	up	this	timer.So	we	don't	have	a	lot	of	timers	that	just	ticks	in	the	background.And	you	can	imagine	you	have	a	lot	of	stuff	that	you	want	to	do	maybe	to	clean	up	stuff.So	you	can
always	do	that	in	a	return	function	with	the	use	effect.This	one	doesn't	trigger	until	this	render	has	finished	and	is	going	to	render	again.So	that	is	sweet.We	can	say	this	one.And	we	can	actually	go	back	to	the	use	on	fetch.And	up	here.We	can	console	log	the	search	term,	so	we	can	see	that	something	is	happening.So	go	back	to	the	application
again.Yeah,	I	have	a	typo	somewhere.Maybe	I	didn't	save	the	home.Save	go	back	to	the	browser.Yeah,	no,	it's	worse.You	can	see	it's	really	important	to	save	your	files	because	it	will	break	otherwise,	be	sure	to	save	all	the	files.So	if	I	type	in	test,	and	you	can	see	here	after	500	millisecond	it	will	trigger.So	that's	sweet.We	know	that	that	is	working
and	we	Use	this	to	fetch	data	from	the	API.But	there	are	one	more	thing	I	want	to	do.And	I	promised	you	to	show	you	a	little	trick	with	the	use	ref.And	that	is	because	the	use	effect	always	trigger	on	the	initial	render,	and	we	don't	want	to	trigger	a	fetch.When	this	component	mounts,	we	only	want	it	to	trigger	when	the	user	has	typed	something	in.So
that's	why	I'm	going	to	create	a	cost	that's	called	initial	up	here.And	I'm	going	to	use	ref.And	I	set	it	to	true.So	when	we	call	the	use	ref	hook,	this	one	will	create	a	mutable	value	for	us	that	you	can	compare	to	something	similar	as	a	mutable	variable.So	we	have	this	initial	const,	and	the	actual	value	is	going	to	be	in	the	initial	dot	current,	that
property	will	hold	the	value	true	right	now.So	I	set	is	the	true	and	inside	the	use	effect,	I'm	going	to	check	if	initial	dot	current,	that's	going	to	be	the	true	value	right	now,	if	it	is	true,	in	it,	it	should	say	initial,	like	this,	right?	This	is	going	to	be	an	async	function	because	we're	making	a	an	API	call.We	have	the	value	And	then	we	can	do	some	stuff
inside	of	here.So	this	value	is	going	to	be	the	value	from	the	range	slider.So	create	a	new	cost	rate	equals,	then	I	wait.And	from	the	api.id	and	I	imported	up	here.No,	I	also	need	to	import	the	API.We	do	that	up	here,	import	API	from	dot	dot	forward	slash	dot	dot	forward	slash	API,	like	this,	then	I	go	back	down	here	and	change	this	one.API	dot,	I'm
going	to	grab	the	function	that's	called	rate	movie.And	if	you	want	to	know	more	about	these	functions,	you	can	always	check	them	out	in	the	api.js	file.Because	I	told	you	probably	too	many	times	now	that	I	pre	made	these	functions	for	you.So	you	don't	have	to	do	that	in	this	course.Alright,	move	back	to	the	movie	and	for	an	index.js	file.So	the	rate
movie	function	is	going	to	take	in	three	arguments.So	we	have	the	user	dot	session	ID.And	we	have	the	movie	ID,	because	we	need	to	know	the	movie	ID	of	the	movie	that	we	want	to	rate.And	we	also	want	to	give	it	the	value,	that's	the	rating	value.Right.And	that's	actually	everything	we	need	to	do.In	this	case,	I	just	want	to	console	log	out	to	rate	to
see	that	we	get	something	back	and	that	the	rating	was	working.So	we	can	use	this	handle	rating.Now	down	below	here,	we	can	give	it	to	the	rate	component,	we	have	a	prop.That's	called	callback.And	we	give	it	to	hand	reading	and	save	the	file.	You	will	learn	by	building	a	real	app.You	will	learn:ReactJSXStyled	ComponentsReact	RouterState	and
PropsContextCSS	API	handlingHooks	TypeScriptPersist	state	in	SessionStorageDeploy	to	NetlifyAnd	much	more.Watch	the	full	course	on	the	freeCodeCamp.org	YouTube	channel	(7-hour	watch).Transcript(autogenerated)react	is	one	of	the	most	popular	JavaScript	frameworks	in	this	comprehensive	and	well	made	course.Thomas	Weibenfalk	will	teach
you	everything	you	need	to	know	to	start	using	react.Hello,	and	welcome.I'm	Tomas	vevo	to	developer	from	Sweden.And	thank	you	for	enrolling	this	course.I'm	actually	a	little	bit	of	extra	proud	on	this	one,	because	I	created	a	lot	of	courses	during	the	years	now,	but	this	one	is	the	first	ever	course	I	created	because	I	love	react.And	I	wanted	to	create
courses.So	this	is	the	third	iteration	the	third	version,	meaning	that	I've	improved	it	a	lot	and	listened	to	you	guys	on	what	stuff	you	want	in	the	course.So	I	think	it's	actually	really	good.There's	always	room	for	improvement,	of	course,	but	this	one,	I	really	enjoyed	this	one.And	it	was	fun	making	it	also.So	hopefully,	you'll	find	a	lot	of	basic	stuff	and
intermediate	stuff,	and	maybe	some	advanced	stuff	to	learn	in	this	course.And	I	think	we	have	to	get	started.So	let's	do	that.Let's	take	a	look	at	the	application	that	we're	building	in	this	course.And	it's	a	nice	little	move	application	that	is	based	on	the	Movie	Database	API.So	you'll	have	to	create	an	account	at	the	Movie	Database.But	we'll	do	that	in
the	next	video.So	I	thought	I	could	show	you	the	application	so	that	you	have	a	little	feeling	about	what	we're	going	to	build	in	this	course.And	this	one	is	always	going	to	show	the	most	popular	movie	here	we	have	this	hero	image.So	we're	going	to	create	this	one.And	we	also	have	some	text,	and	we	have	a	header	up	here	also,	then	we	can	search	for
movies,	or	examples,	Star	Wars.And	we'll	see	all	the	movies	here.So	that's	how	the	basic	functionality	of	this	application	is.And	if	we	click	on	the	movie,	you	can	see	that	we	get	all	data	from	that	movie.So	that's	nice.We're	going	to	show	the	actress	and	also	some	information	about	the	movie	itself,	we	can	see	the	revenue,	the	budget,	and	the	running
time,	for	example.And	here,	you	may	think	that	you	can	also	click	on	actors.And	yeah,	of	course,	we	could	do	that.But	I	have	to	limit	this	tutorial	somewhere.So	this	course	is	not	going	to	go	there.But	it's	a	great	foundation,	if	you	want	to	build	upon	this	application.So	you	can	add	in	the	functionality	of	showing	information	about	the	different	actors
and	stuff	like	that.We	also	have	this	little	breadcrumb	menu	appears,	we	can	go	back	to	the	homepage.And	in	this	version	of	the	course,	this	is	version	three,	I'm	going	to	show	you	how	to	create	the	styles	also	are	going	to	be	fairly	quick	when	I	show	the	stars	because	I	still	want	to	have	the	main	focus	on	react	itself.So	that's	something	that's	new	in
this	version	three	of	this	course.And	of	course	everything	is	going	to	be	responsive,	we're	going	to	create	that	one	also,	as	you	can	see	here,	the	grid,	for	example,	with	the	movies,	it	changes	depending	on	the	viewport	size.So	that's	nice.So	it's	a	fully	working	application.And	to	be	honest,	I'm	quite	proud	of	this	design,	I	created	the	design	myself
course	I'm	both	a	developer	and	the	designer.So	that's	why	I	love	doing	design	stuff	also.And	I	think	it	looks	pretty	neat.Actually,	I've	updated	it	slightly,	since	two	previous	versions	to	look	a	little	bit	more	modern.But	I	think	it's	mostly	Yeah,	I	changed	some	colors,	for	example,	on	the	bottom	and	stuff	like	that.Alright,	so	that's	the	application.In	the
next	video,	I'm	going	to	talk	about	the	Movie	Database	API,	and	how	you	can	register	to	get	your	own	free	API	key	that	I'm	going	to	use	in	this	course.Okay,	so	let's	talk	about	the	Movie	Database	API.That's	the	API	that	we're	going	to	use	in	this	course.And	the	Movie	Database	has	a	great	API	for	fetching	a	lot	of	movies,	TV	shows	and	stuff	like	that,
we	are	going	to	focus	on	the	movies.So	that's	what	we're	going	to	do	here.And	you	can	sign	up	for	a	free	account	at	the	Movie	Database.So	just	go	to	the	movie	db.org.And	click	Join	TMDB.And	then	you	can	fill	out	a	username	and	password	an	email	and	create	an	account.And	when	you	have	created	an	account,	you	probably	get	an	email	where	you
have	to	verify	yourself	before	you	can	log	in.But	when	you	have	created	your	account,	make	sure	that	you	go	back	to	the	movie	DB	and	click	on	login.And	then	you	enter	your	username	and	password	just	as	a	regular	site	that	you	log	into.All	right,	and	then	you're	presented	with	this	dashboard	kind	of	thing.I	think	it's	a	dashboard.And	the	only	thing
you	have	to	do	is	go	up	here	to	your	profile	and	click	on	this	round	button	up	here.And	then	you	have	the	settings	here	so	she'll	settings.And	then	at	the	left	menu	here,	you	can	see	that	you	have	something	that's	called	API.So	click	on	API,	I	guess	I	probably	have	to	blur	this	ones	out	because	I	don't	want	to	show	you	my	own	API	key.This	is	the	one
that	we	using	API	key	version	three	auth.So	this	is	the	one	that	we're	going	to	use.So	make	sure	to	save	this	somewhere	for	now	because	we	are	going	to	add	it	to	our	application	in	a	little	while.So	make	sure	that	you	have	easy	access	to	this	one	as	we're	going	to	paste	this	in	into	our	application	in	a	little	while	when	we	have	bootstrapped	our
application	with	something	that's	called	create	react	app.And	I'm	going	to	talk	more	about	that	in	a	little	while.Before	we	start	creating	our	application,	I	just	want	to	talk	a	little	bit	about	react	and	what	it	is.So	if	you	go	to	the	React	js.org,	you	can	read	more	about	react.And	this	is	a	great	starting	point,	if	you	just	started	out	with	react,	they	have
different	documentation,	they	have	tutorials,	and	a	blog	and	stuff	like	that.And	you	can	read	everything	that	you	need	to	know	to	get	started	with	react.So	I	tried	to	make	this	course	kind	of	beginner	friendly.But	react	is	kind	of	at	least	intermediate	in	its	own	nature.So	it's	hard	to	make	it	really,	really	beginner	friendly.It	also	depends	a	lot	on	how	you
learn	stuff,	I	love	to	learn	stuff	in	this	product	oriented	way,	where	I	just	build	some	product	and	learn	along	the	way.So	I	only	create	courses	on	how	I	want	to	learn	stuff	myself,	but	it's	very	individual.So	some	may	think	that	it's	not	beginner	friendly	at	all,	and	so	many	things	that	it	is.That's	why	I	also	recommend	to	check	out	react	js.org	to	read
about	the	very,	very	basic	stuff,	at	least	in	react.So	what	is	react?	Yeah,	we	can	take	a	look	here,	for	example,	here	they	create,	this	is	a	class	and	this	is	kind	of,	I	like	to	call	it	the	old	way,	the	classes	still	exist,	I	don't	use	them	anymore.And	in	this	course,	we're	going	to	focus	on	creating	functional	components.And	I'm	going	to	tell	you	more	about
that	later.And	in	the	end	of	the	tutorial,	when	we're	finished	application,	I	also	going	to	show	you	how	to	convert	some	of	the	components,	the	stateful	components	to	class	components,	just	in	case,	you	need	to	know	how	to	create	class	components	also,	because	the	reality	is,	if	you	start	working	for	a	company	or	a	client,	there	may	probably	be	some
components	that	are	still	class	components.Because	there's	a	lot	of	applications	made	in	react	that's	made	before	we	had	state	in	functional	components.That's	why	you	had	to	had	a	class	before	to	have	stayed	in	them.And	we're	going	to	talk	about	that	later	also.So	this	is	a	component	they	created	with	a	class	and	they	call	it	Hello	message.And	as	you
can	see	here,	they	using	something	that's	very	much	like	regular	HTML,	they	have	this	tag	here	with	a	Hello	message.And	this	name	is	a	so	called	prop	the	sending	in,	and	we're	going	to	talk	more	about	props	also	later,	so	don't	worry	about	that.But	this	is	actually	not	HTML.It's	something	that	called	JSX.And	that's	something	that	we're	also	going	to
learn	in	this	course.So	we	create	the	component	here,	we	tell	it	to	use	this	component	and	react	will	take	care	of	the	rest	and	create	this	div	with	our	text	Hello.And	in	this	case,	it's	going	to	be	the	name	that	we	send	in	with	a	prop.So	the	name	is	going	to	be	Taylor.It's	going	to	type	out	Hello	Taylor.As	you	can	see	here.So	this	is	very,	very	neat	with
react,	we	can	reuse	these	components	in	our	application.So	that's	short	on	what	react	is.And	as	I	told	you,	we're	going	to	learn	a	lot	more	stuff	in	the	course	itself	when	we	create	application.And	hopefully,	at	the	end	of	the	course,	you'll	have	more	understanding	of	react	and	how	awesome	it	is.Because	I	really	love	react,	I'm	really	passionate	about
using	react.And	actually,	this	course	is	also	something	that	I'm	very	passionate	about.Because	this	is	my	first	ever	course	I	created.And	this	is	the	third	version,	meaning	that	I	have	listened	to	people	that	have	enrolled	this	course	before	and	changed	stuff	and	added	stuff	to	make	it	more	optimal	and	more	perfect.And	hopefully,	you	will	enjoy	this
course.For	this	course,	I	provided	you	with	a	sip	file	that	you	should	download	before	you	start	the	course.And	this	zip	file	contains	a	few	folders	here,	as	you	can	see,	and	it	may	look	maybe	a	little	bit	different	when	I	am	the	recording	of	this	course,	because	I	haven't	really	recorded	it	yet,	but	I	think	it	will	look	this	way.But	if	it	looks	a	little	bit
different,	it's	okay.Hopefully	you	can	read	the	folder	names	and	understand	what	they	for.So	I'm	going	to	provide	you	with	a	folder	that's	called	files	to	be	copied	to	the	project	folder.These	are	files	that	we're	going	to	use	for	the	course.So	I	have	created	a	file	for	us	the	setups	API,	so	we	don't	have	to	write	our	own	functions	for	fetching	the	data.So
I'm	going	to	show	you	that	when	we	fetch	data	from	the	API,	I	have	a	config	file	and	a	helpers	file.And	I'm	going	to	talk	more	about	those	later	also.And	then	I	have	a	few	images	that	we	also	need	for	the	course.So	that's	why	I	have	this	folder	that	we're	going	to	copy	over	to	a	project	when	we	have	created	it,	and	the	public	folder,	the	index	dot	HTML
file,	I	have	this	here,	because	I'm	using	a	Google	Font	for	this	one.So	I've	already	provided	that	one	in	the	index	dot	HTML,	so	we	don't	have	to	do	that	ourselves.So	that's	the	one	that	we	have	to	copy	later.And	I'm	going	to	show	you	that	when	the	time	comes.And	you're	also	going	to	have	two	options.If	you	don't	want	to	create	everything	from
scratch,	when	I	set	up	the	application,	you	can	just	ignore	that	and	start	from	a	project	without	the	styles.And	this	is	if	you	want	to	create	the	styles	also,	I	structured	this	course.So	you	should	be	able	to	fairly	easily	just	skip	the	parts	where	I	create	the	styling	for	the	components.Some	people	have,	you	don't	want	to	create	the	CSS	and	the	styling.So
that's	why	I	made	it	in	this	way.So	this	is	the	one	you	should	use	if	you	want	to	create	the	styles.Otherwise,	you	use	the	one	that's	called	with	styles,	that	one	will	provide	you	with	all	the	styling,	so	you	don't	have	to	type	in	the	styles.And	you	can	skip	those	videos.So	if	you	want	to	start	from	one	of	those	projects,	you	navigate	inside	of	that	one,	and	in
your	terminal,	you	type	npm	install,	and	that's	going	to	install	all	the	dependencies	for	you.And	then	every	time	you	start	up	the	application,	you	can	type	in	NPM	start.And	that's	also	something	that	I'm	going	to	show	you,	so	don't	worry	about	that.Then	you	have	a	folder	with	the	finished	app	if	you	want	to	check	out	the	result.But	please	be	aware
here,	you	have	to	put	your	own	API	key	in	a	file	that's	hidden	here	now	is	called	dot	end.inside	of	that	one,	you	have	to	paste	in	your	own	API	key,	otherwise,	it	won't	work.And	that	goes	for	the	step	solutions.Also,	I	have	provided	you	with	step	solutions	that	corresponds	to	each	video.And	if	you	want	to	run	an	example,	from	a	particular	step	solution,
you	also	have	to	paste	in	your	API	key	in	the	dot	m	file.And	I	also	got	to	talk	more	about	the	dot	m	file.But	this	is	the	start	of	files.So	you	have	to	think	about	if	you	want	to	create	the	styling	in	this	course,	and	you	also	have	to	think	about	now	if	you	want	to	set	everything	up	from	scratch.Or	if	you	don't	want	to	do	that,	you	can	just	start	from	one	of
these	folders	here,	navigate	inside	Odin	type	npm	install,	or	if	you're	using	yarn,	you	should	be	able	to	use	that	one	also.And	then	NPM	start	or	yarn	start	to	start	up	the	application.Alright,	let's	move	on	in	the	next	video.I'm	just	shortly	going	to	talk	about	the	tooling	that	I'm	using	for	this	course.Just	a	short,	short	little	video	about	what	tooling	I'm
using	for	this	course,	I	think	you	already	should	know	this	tooling	and	have	it	installed	to	be	able	to	fully	take	advantage	of	this	course.Otherwise,	it	can	be	a	little	bit	hard.if	you	for	example,	haven't	used	NPM	that	I'm	going	to	use	to	install	dependencies.I	suggest	that	you	learn	about	that	first,	because	this	is	a	beginner	slash	intermediate	course	in
react.It's	not	a	beginner	course	in	coding,	you	should	know	some	JavaScript	and	especially	iOS	six	syntax,	we're	going	to	use	a	lot	of	iOS	six	syntax	in	this	course.So	it	should	be	a	good	idea	to	shape	up	your	knowledge	in	JavaScript	before	starting	to	learn.react.But	that's	only	my	opinion.But	of	course,	you	should	do	it	your	own	way.If	you	want	to
learn	react	before	vanilla	JavaScript,	it's	totally	up	to	you,	I	shouldn't	tell	anyone	on	how	they	want	to	take	on	their	coding	journey.All	right,	so	I'm	using	NPM.And	that	means	that	I	have	to	have	node	installed,	we're	not	using	no	de	s,	per	se.But	no,	Deus	includes	the	NPM	package	manager.So	that's	why	we	have	to	install	that	one.So	if	you	don't	have
that	installed,	make	sure	to	grab	the	latest	version	and	install	it.Then	I	use	Visual	Studio	code	as	my	ID.So	that's	what	I'm	using	in	this	course.And	then	I'm	going	to	use	create	react	app	and	bootstrap	our	react	application	really	fast	and	easy.So	that's	what	we're	going	to	do.And	I'm	actually	going	to	do	that	in	the	next	video.So	let's	get	started	with
our	application.I'm	happy	to	see	that	you're	going	to	create	this	project	from	scratch.And	we're	going	to	use	create	react	app	to	bootstrap	our	application.So	let's	get	started.If	we	look	at	the	homepage	for	create	react	app,	you	can	find	it	at	create	dash	react	dash	app	dot	Dev.And	then	they	have	something	here	in	the	menu	that's	called	get
started.And	the	only	thing	that	we	have	to	do	is	remember	this	row	here	mpex,	create	dash	react	dash	app.And	then	you	have	the	name	of	your	application	that	you	want	to	create	an	empty	x	is	something	that's	provided	with	NPM	in	the	latest	versions,	so	you	don't	have	to	globally	install	create	react	app	to	use	it,	this	will	make	sure	that	we	grab	the
latest	version.So	I	always	use	mpex,	instead	of	first	globally	installing	create	react	app.So	this	is	really	great,	because	then	I	know	that	I'm	using	the	latest	version,	and	you	don't	have	to	install	it	globally.But	if	you	want	to	do	that,	you	can	of	course	install	create	react	app	globally	first,	but	this	is	the	command	that	I'm	going	to	use.So	make	sure	that
you	navigate	inside	of	your	terminal.I'm	using	a	terminal	that's	called	hyper,	I	get	a	lot	of	questions	about	that	what	terminal	I'm	using,	I	actually	don't	remember	the	name	of	the	theme,	but	I	style	it	a	little	bit	to	my	likings.So	that's	sweet.So	hyper	is	a	great	terminal.If	you	want	to	have	a	customized	terminal.You	also	have	a	built	in	Terminal	in	Visual
Studio	code,	of	course.So	let's	get	started,	make	sure	that	you	navigate	inside	of	a	folder	where	you	want	to	create	the	reputation.And	then	we	type	in	MP	x	and	then	create	dash,	React	dash	app.And	then	we	have	the	name	of	our	application.And	I'm	going	to	name	it	react	dash	or	dB.And	RM	DB	stands	for	react	Movie	Database.So	that's	the	best	I
could	come	up	with.You	can	use	whatever	name	you	want.And	then	we	can	hit	Enter,	and	then	wait	for	it.It	will	install	everything	for	us.So	it	will	take	a	little	while.All	right.Hopefully	that	installed	correctly	for	you.And	create	react	app	has	now	hopefully	bootstrap	or	application,	you	could	set	up	this	yourself	and	not	use	create	react	app.But	create
react	app	is	actually	used	in	in	many	production	applications.And	it's	actually	used	right	now	for	a	client	that	I	work	with.And	it's	a	fairly	large	application.So	you	can	do	a	lot	of	stuff	with	create	react	app.And	it's	using	Babel	and	Webpack	in	the	background	to	set	up	direct	environment	for	you.So	that's	what	you	can	do	yourself	if	you	don't	want	to	use
crate	react	app.But	I'm	not	going	to	show	that	in	this	course,	because	I	think	it's	a	little	bit	advanced	for	a	beginner	course.And	actually,	we're	going	to	be	fine	with	create	react	app,	that's	all	that	we	need.So	we	also	want	to	make	sure	that	it	works.So	make	sure	that	you	navigate	inside	of	the	product	folder,	I'm	going	to	clear	this	and	then	type	in	a
CD,	React	dash	or	MDB,	or	whatever	you	named	it.And	then	we're	inside	of	that	folder.And	then	we	can	type	NPM	start.And	it	should	start	up	our	environment.This	is	the	finished	one	that's	here	now.So	it's	going	to	be	replaced	by	this	application	here.So	it's	working.And	we	have	successfully	bootstrap	our	application.And	that's	sweet.In	the	next
video,	we're	going	to	install	a	few	dependencies	that	we're	going	to	use	for	this	project.We	are	bootstrap	the	application.And	now	we're	going	to	install	some	dependencies	that	we're	going	to	use	for	this	project.And	the	first	one	is	going	to	be	something	that's	called	react	router.And	react	router	is	the	standard	in	react	application	for	handling	routes,
because	this	is	a	single	page	application.And	we	need	something	to	handle	or	rolling	because	we	are	going	to	have	different	pages.And	the	one	that	we're	going	to	use	is	called	react	router.There	is	another	library	that's	called	reach	router.And	I'm	actually	using	that	one	in	version	two	of	this	course.But	the	team	that	created	reach	router	and	react
router	is	the	same	team.So	they're	going	to	kind	of	merge	them	together	into	react	router,	version	six.And	this	one	is	still	in	beta	mode,	but	I've	talked	to	them	and	I	think	that	I	should	have	this	one	in	this	course,	because	it	will	soon	be	out.And	the	API	won't	likely	change	because	we're	not	going	to	use	the	most	advanced	stuff	in	this	router	library.So
we	will	be	fine.And	we	have	some	instructions	down	here.I'm	at	github.com,	forward	slash	react	training	forward	slash	react	dash	router,	forward	slash	releases.And	down	below	here,	we	can	see	that	we	have	some	instructions	on	how	to	install	it.So	I'm	going	to	bring	up	my	terminal,	do	something	like	this.And	we	could	of	course,	just	copy	this	one
and	paste	it	in.But	in	my	courses,	I	wanted	to	learn	as	much	as	possible.And	it's	always	a	great	idea	to	not	copy	paste	too	much	and	type	stuff	in	because	that	will	make	you	remember	stuff	much	easier.So	that's	what	we're	going	to	do	now.So	I'm	going	to	type	in	MPM	II,	or	if	you're	using	yarn,	you	can,	of	course	use	that	instead,	I'm	going	to	use	NPM
for	this	whole	course.And	I'm	typing	in	I	instead	of	typing	out	the	complete	word	install,	that's	a	short	term	for	install.So	NPM	I,	and	then	we	need	to	install	something	that's	called	history.Also,	that's	another	library	that's	used	in	combination	with	react	router,	and	we	can	install	them	in	one	go.If	I	type	history	here,	then	I	have	a	blank	space.And	then
I	can	type	in	the	other	library	that	I	want	install.And	in	this	case,	it's	going	to	be	react	dash,	router,	dash	dome.And	then	we	have	an	add	sign.And	next,	and	this	will	grab	the	better	version	of	react	router.So	press	enter,	and	wait	for	it.Hopefully,	that	installed	for	you	correctly.So	I'm	going	to	clear	my	console	again.And	we're	going	to	move	on	to
something	that's	called	styled	components,	styled	components	is	a	super	great	library	to	use	in	combination	with	react	with	styled	components,	we	can	create	our	CSS	in	isolated	and	scoped	components.So	that's	really,	really	great.And	we	have	a	lot	of	features	that	we	have,	for	example,	in	SAS,	we	can	do	nesting	and	stuff	like	that.And	we	can	send
him	props	and	change	our	styling	dynamically.And	we're	going	to	talk	more	about	styled	components	as	we	go	along	in	this	course,	because	we	are	going	to	create	the	styling.If	you	choose	that	path	there,	I	really	think	you	should	if	you	want	to	have	some	CSS	practice,	but	it's	up	to	you,	I	provided	you	with	different	alternatives	for	this	course.So
we're	going	to	install	style	components.And	you	can	read	more	about	it	at	style	dash	components.com.So	go	back	to	the	terminal,	and	we	type	in	MPM	is	styled	dash	components.And	we	press	enter.Alright,	that	went	smoothly.So	clear	the	console	yet	again,	and	we	move	on	to	the	last	dependency	that	we	need.And	that	is	something	that's	called	prop
types.Prop	types	is	a	great	tool	in	react,	where	you	can	type	check	your	props	that	you	send	into	your	components.So	as	they	say,	here	is	runtime	type	checking	for	react	props	and	similar	objects.So	that's	great.Today,	a	lot	of	people	use	TypeScript	instead,	then	you	don't	need	to	use	prop	types.And	I	actually	use	TypeScript	a	lot	myself,	I'm	starting	to
like	it	actually.But	in	our	case,	we're	not	using	TypeScript.Right.Now,	I'm	going	to	show	you	that	at	the	end	of	this	course	in	a	special	module	that	I	created,	where	we	refactor	everything	to	use	TypeScript	instead.But	for	now,	we're	not	using	TypeScript.So	that's	why	we're	going	to	use	prop	types.And	I'm	going	to	talk	more	about	this	later	in	the
course.And	I've	placed	it	title	at	the	end	of	the	course,	because	I	don't	want	too	much	stuff	going	on	when	we	learn	react.So	that's	why,	so	I'm	going	to	talk	about	it	at	the	end	of	the	course.And	when	you	create	a	component	that	has	some	props,	you	should	use	prop	types	to	do	type	checking	on	your	props.But	I'm	not	going	to	do	that	first,	I'm	going	to
add	it	in	later	in	the	course.So	we	don't	get	distracted	or	have	too	much	stuff	going	on.All	right,	to	go	back	to	the	terminal,	type	in	NPM.I	dropped	dash	types,	and	press	enter.So	that's	it.That's	our	dependencies.And	of	course,	I	didn't	mention	it	at	the	start	of	this	video,	you	should	of	course	be	in	the	folder	that	we	created	the	application	that	we
bootstrapped	with	create	react	app,	it's	very	important,	you	have	to	navigate	inside	of	that	folder.Otherwise,	it	won't	work	because	we're	installing	the	dependencies	in	that	project	folder.Alright,	in	the	next	video,	we're	going	to	copy	some	files	from	the	store	to	file	c	file	to	this	project	that	we're	going	to	need	to	make	this	work.If	we	look	inside	of	our
project	folder,	React	dash	orientdb,	we	can	see	that	we	have	some	different	folders	and	files	here.And	for	example,	if	we	look	in	the	public	folder,	we	can	see	that	we	have	some	image	files	and	the	index	dot	HTML	file.And	this	is	the	folder	that	the	dev	environment	is	going	to	build	for	us.So	the	public	folder	is	the	finished	files	that	we're	using	for
running	the	application.So	that's	everything	inside	of	there.And	the	source	folder.The	src	folder	is	going	to	be	the	folder	where	we	create	all	our	stuff	for	application.So	you	can	see	we	have	some	CSS	file,	we	have	an	app	file,	an	index	file	and	an	index	CSS	file.We	also	have	a	test	file.We're	not	going	to	do	any	tests	in	this	course.So	this	one,	we're	not
going	to	use.And	we	have	a	service	worker,	we're	not	going	to	use	this	one	either.And	we	have	the	set	of	tests	that	we're	not	going	to	use.If	we	take	a	look	inside	of	a	zip	file,	the	starter	files	that	you	should	have	downloaded	for	this	course.And	we	take	a	look	inside	of	the	first	folder	here,	one	files	to	be	copied	to	product	folder.Alright,	so	that's	the
files	that	gonna	be	copied	to	the	project.So	make	sure	that	you	mark	them	here,	copy	them,	move	back	to	your	folder,	your	project	folder,	and	paste	them	in.And	then	you're	going	to	choose	to	replace	the	old	folders.This	one	is	in	Swedish	here.So	you	probably	don't	understand	it	if	you're	not	from	Sweden.But	what	it	says	here	is	to	replace	it,	so	I'm

going	to	click	that	button.And	then	it's	going	to	ask	me	if	I	want	to	merge	the	source	folder	or	if	I	want	to	replace	it.So	if	it	asks	you	to	merge	it	or	replace	it,	always	choose	replace.All	right,	so	we	successfully	copied	the	files.And	if	we	take	a	look	inside	of	the	public	folder,	here,	we're	going	to	have	exactly	the	same	files.The	only	difference	is	that	I've
added	in	a	Google	import	of	a	font	that's	called	Abel	or	Apple,	I	don't	really	know,	if	I	pronounce	it	correctly,	it	sounds	better	to	pronounce	it,	Abel.So	I	think	that's	the	correct	one.That's	the	only	thing	I've	changed	here.And	that's	the	in	the	index	dot	HTML	file,	the	other	files	remain	the	same.So	that's	the	public	folder.And	if	we	look	inside	of	the	src
folder,	you	can	see	that	it's	lesser	files	now.And	that's	because	I	removed	all	the	files	that	has	something	to	do	with	tests,	or	the	service	worker	and	all	the	CSS	files	that	we	don't	need,	because	we're	going	to	use	styled	components.And	I	also	added	in	some	files	and	a	folder,	we	have	the	images	folder.And	this	one,	of	course	contains	the	images	that
we're	going	to	use	for	this	course.And	then	I	have	a	file	that	called	API	dot	j	s.And	inside	of	this	file,	there	are	some	functions	that	are	going	to	handle	the	API	calls	to	the	Movie	Database	API.And	in	the	previous	versions,	we	actually	created	this	ones	ourselves	in	the	course.But	I	think	that	was	just	a	distraction	from	react	and	react	syntax.Because
this	is	a	course	about	learning	react.And	the	thing	is	that	this	is	regular	JavaScript	inside	of	this	one,	it	has	nothing	to	do	with	react	per	se.So	that's	why	I	created	this	one	for	you	instead,	and	placed	them	in	a	file.And	of	course,	I'm	going	to	talk	more	about	these	functions	when	we	reach	that	point	in	the	course.And	then	I	have	a	config	file.And	this
config	file	contains	everything	that	has	to	be	set	up	with	a	Movie	Database	API.And	I	have	a	helpers	file	also,	and	help	us	file	contains	a	couple	of	functions	that	will	help	us	to	convert	some	numbers	into	money,	and	also	to	convert	our	time.And	I'm	gonna	talk	more	about	these	two	files	also,	later	in	this	course.So	these	are	the	files,	hopefully	this	one
will	work.So	if	we	go	back	to	our	terminal,	and	this	one	is	running	now,	so	just	to	be	sure,	I'm	going	to	break	it	and	run	NPM	start	just	to	see	that	it	works.It's	always	a	great	idea	to	see	that	stuff	works	when	you're	sharing	something.And	then	I	go	to	my	browser	and	reload	the	page.And	you	can	see	I'm	at	localhost	3000,	just	as	before.But	now	this
nice	little	rotating	react	logo	is	removed,	and	it	says	start	here.And	that	is	because	I	removed	that	one.And	I've	modified	this	file	so	that	we	can	start	from	here	now	in	this	application.So	if	it	says	start	here,	you	know	that	you	successfully	copied	all	the	files,	hopefully,	and	it	should	work	for	you.In	the	next	video,	we're	going	to	move	on	and	actually
use	that	API	key	that	you	got	when	you	registered	for	the	Movie	Database	API.Okay,	we	got	one	more	thing	to	do.And	then	we	finished	with	the	setup	of	our	project.And	that	is	that	we're	going	to	create	a	dot	m	file	and	paste	in	our	API	key.So	in	our	application	folder	at	the	root,	we're	going	to	create	a	new	file,	I'm	going	to	call	it	dot	E	and	V	dot	m,
and	create	react	app	has	built	in	support	for	environmental	variables,	the	only	thing	that	you	have	to	do	is	to	name	them	with	react	first.So	react,	underscore,	and	that's	important,	otherwise,	it	won't	recognize	it.And	this	one	is	going	to	be	called	AP	underscore	API	underscore	key,	all	capital	letters.And	then	we	have	an	equal	sign.And	then	you	can
paste	in	your	API	key	here.And	that's	everything	you	have	to	do.So	just	paste	it	in	just	after	the	equal	sign,	and	you're	good	to	go.And	save	the	file.This	API	key	is	then	used	in	the	source	folder	in	my	config.js	file.You	can	see	that	our	get	it	to	here,	process	dot	n	dot	react	app	API	key.And	this	is	all	managed	inside	of	the	Create	react	app.When	it	starts
up	or	dev	environment	and	creates	all	the	files	for	us	and	stuff.It	will	take	care	of	these	various	really	important	to	market	with	react	underscore	before	the	actual	name	of	the	environmental	variable	and	all	this	Here	is	something	that	I	created	for	you.So	you	don't	have	to	care	about	this.So	I	create	the	different	resources	from	the	endpoint	on	the
Movie	Database	here.And	we're	going	to	use	these	resources	in	the	course	later.And	then	I'm	going	to	talk	about	more.So	I	have	different	endpoints	for	the	search,	for	example,	and	to	get	the	popular	movies.And	this	was	our	for	the	bonus	videos	at	the	end,	where	I	create	the	login,	and	voting	that	also	provided	with	the	Movie	Database	API,	you	can
log	in	with	your	account,	and	cast	a	vote	on	a	movie,	or	on	old	movies.If	you	want	to	do	that.Then	we	have	the	image	base	URL.This	one	is	also	from	the	movie	database.So	these	ones	are	provided	from	the	API.So	just	use	them	according	to	their	instructions.And	we	have	a	backdrop	size,	we	can	set	the	size	of	the	backdrop	and	the	poster	size	on	the
images,	we	can	set	different	sizes	here	and	I	mark	them	here	for	you	if	you	want	to	try	to	change	them	and	see	what	it	does.So	we	don't	have	to	think	more	about	these	as	I	set	them	up	for	you.And	there's	also	a	file,	it's	called	API	dot	j	s.And	inside	of	this	one,	I	created	the	actual	code	that	is	going	to	fetch	the	data,	we	can	call	these	functions	later
when	we	fetch	the	data.And	we	don't	have	to	type	in	all	of	this	ourselves.And	of	course,	I'm	also	going	to	talk	more	about	these	functions	later	when	we	fetch	the	movies.So	this	one	is	for	fetching	all	the	movies,	and	this	one	is	for	fetching	one	movie.And	then	we	have	this	one	here	that	will	fetch	the	credits.And	below	here,	these	are	all	for	the	bonus
material	also.So	you	don't	have	to	care	about	those	in	the	kind	of	main	part	of	the	course.So	we	have	three	functions	here	that	is	going	to	fetch	data	for	us.So	that's	one	thing	I	changed	actually,	in	this	version	of	the	course	before	this,	we	created	these	ones	ourselves	in	the	course,	but	I	think	it's	a	little	bit	advanced	for	a	beginner	course.And	I	also
think	that	it	takes	the	focus	on	react	itself,	because	this	is	JavaScript,	it's	not	react	specific	code.So	that's	why	and	I	want	this	experience,	I	want	this	course	to	be	a	fun	course	also.So	you	don't	get	tired	and	stop	the	course	and	won't	finish	it.So	that's	why	I	created	these	ones	for	us.Alright,	so	that's	the	config	and	a	py	file.And	then	I	have	one	more
file	that's	called	helpers	dot	j	s.And	this	one	contains	two	functions,	that's	going	to	help	us	to	calculate	the	time	and	also	convert	to	money,	because	the	numbers	that	we	get	from	the	API	has	to	be	converted	both	the	time	and	the	money.So	I'm	going	to	use	these	ones	later	in	the	course	also.Alright,	so	create	the	dot	m	file,	create	a	variable,	React
underscore	app,	underscore	API	underscore	key	capital	letters	equals	and	then	you	paste	in	your	API	key.Otherwise,	it	won't	work	because	you	can't	access	the	API.one	really	important	thing	to	notice	here	is	that	this	environmental	variable	won't	be	safe,	because	it	will	be	visible	in	the	client.So	don't	think	that	this	one	won't	show	up	in	the	browser,
of	course,	you	have	to	look	for	it.But	if	you're	good	at	looking	through	code,	you	will	be	able	to	find	this	API	key.So	this	is	not	a	safe	way	to	provide	an	API	key	if	you	want	to	hide	it	from	the	browser.In	our	case,	it's	not	that	kind	of	a	secret	key,	that	doesn't	matter.And	for	the	sake	of	the	course,	it	would	be	too	advanced	to	create	a	system	that	will	hide
this	for	us	completely.So	notice,	this	one	won't	be	safe	in	the	client.Before	we	move	on,	I	want	to	talk	about	a	really	important	aspect	of	react	that	I	think	a	lot	of	people	actually	forget.And	that	is	when	we	create	stuff	with	react,	we	are	also	using	something	that's	called	JSX.And	it	stands	for	JavaScript,	XML.And	if	we	look	here,	I'm	at	the	React	js.org
page	now,	and	they	show	us	here	how	to	create	the	component.And	this	is	a	class	component.And	as	I	told	you,	before,	we	are	going	to	create	functional	components.So	we're	not	going	to	create	class	components	for	this	application.But	they	are	using	JSX.Here,	and	this	is	JSX.You	may	think	that	this	is	HTML,	but	it's	actually	not	it's	JSX.And	JSX	is
something	that	is	really	great	to	use	in	combination	with	react,	because	we	can	render	out	our	different	components	like	this	by	using	HTML	ish	syntax.I	think	a	lot	of	people	actually	forget	it.Because	I	don't	know	exactly	the	percentage,	but	I	think	at	least	99%	of	the	applications	use	JSX.In	combination	with	react,	some	people	don't	use	it.And	that's
what	I'm	going	to	talk	about	here.Because	you	can	create	components	without	JSX	in	react.And	that	is	if	we	scroll	down	here,	you	use	something	that's	called	create	element	on	the	React	objects	react	dot	create	element,	we	specify	if	we	want	some	props.And	then	we	specify	the	Child	Elements	for	this	element.And	you	can	see	up	here,	React	dot
create	element,	we	have	the	component	that	we	want	to	create,	we	have	the	props,	and	also	we	have	the	children	and	this	is	the	spread	syntax	in	JavaScript,	he	has	six.That's	why	they	use	three	dots	here	to	explain	this	though.This	one	Here	is	actually	the	same	as	this,	this	one	here,	will	transpile	down	to	react	dot	create	element.But	it	wouldn't	be
practical	to	use	react	dot	create	element	for	every	component	and	everything	you	do	in	react,	you	can	see	that	it's	not	that	readable,	and	it	will	get	kind	of	messy.And	I	actually	think	that	react	wouldn't	be	that	fun	to	use	if	you	use	it	this	way.So	I'm	just	going	to	show	you	how	to	create	an	element	with	react	dot	create	element	also.And	in	the	next
video,	I'm	going	to	talk	more	about	JSX.But	now	I'm	going	to	show	you	just	a	small	example	on	how	you	can	create	an	element	with	react	dot	create	element.So	let's	move	back	to	our	terminal	and	make	sure	that	our	dev	environment	is	running.So	NPM	start,	always	use	NPM.Start,	when	you	start	up	your	dev	server,	you	can	see	that	we	have	it
running	here	now.Then	I	go	back	to	Visual	Studio	code.And	I'm	going	to	be	in	the	app.js	file.For	this	one,	it's	inside	the	src	folder.And	this	is	kind	of	the	heart	of	our	application,	we	have	the	index.js.That	is	the	start	file	for	the	application.And	you	can	see	the	there	are	import	the	app	component	here,	these	imports	are	e6	syntax	for	import.So	we	can
import	a	model.And	in	this	case,	the	model	is	a	component.And	it's	called	app.So	I	import	that	one	here.And	then	it's	used	here	and	this	one	is	JSX.So	this	is	the	heart	of	our	application,	we	have	both	a	library	that's	called	react.And	we	have	react	Dom	because	react	can	be	used	for	other	stuff	than	the	DOM,	for	example,	you	can	create	native	apps
with	react.But	we	are	going	to	use	the	library	react	DOM.And	this	one	is	all	set	up	with	create	react	app	for	us.So	you	can	see	that	from	the	React	Dom	that	we	import	here,	we	call	the	render	method.And	we	give	it	the	component	that	we	want	to	render.And	we'll	tell	it	where	we	want	to	render	it.So	from	the	document	dot	get	element	by	ID,	we	get
the	root	element.So	if	we	look	inside	a	republic	and	the	index	dot	HTML,	you	can	see	that	we	have	a	div	here,	that's	called	root.And	it's	inside	of	this	div,	that	we're	going	to	render	out	our	complete	application	within	close	to	public	folder	node,	and	go	back	to	the	index.js	file.So	we're	telling	react	to	render	our	application	to	a	div	that's	called
route.And	it's	also	in	something	that's	called	react	strict	mode.It	wasn't	that	before.But	this	is	a	default.Now	with	great	drag	that	in	strict	mode	is	actually	great.It's	going	to	do	a	few	more	checks	if	you	do	some	stuff	that	it	shouldn't	be	doing	when	you	code	your	application.So	it's	always	a	good	idea	to	using	the	strict	mode	in	react.Alright,	so	let's
move	back	to	the	app.js	file.And	as	you	can	see,	here,	we	have	this	element	here,	we	have	the	div	that's	called	AP.And	I	render	out	start	here.And	that's	the	one	that	we	saw	before,	when	we	started	up	the	application.You	don't	have	to	type	this	in	if	you	don't	want,	because	I	want	to	show	you	this,	this	has	nothing	to	do	with	application	that	we're
going	to	build.So	I'm	going	to	create	a	little	component	now.And	then	I'm	going	to	remove	it	and	we	can	continue	on	creating	our	application.I'm	going	to	do	it	with	an	arrow	function,	I	like	to	use	arrow	function,	they	don't	do	it	here.But	you	can	change	this	one	if	you	want	to	an	arrow	function	const	app	equals,	and	then	we	create	an	arrow	here
instead,	like	that,	I'm	used	to	using	arrow	functions.So	I	use	them	for	components	also.So	const,	I'm	going	to	create	a	component	that's	called	store,	and	I	have	an	arrow	function.And	then	from	react,	we	import	react	here,	you	always	have	to	import	react	at	the	top,	and	another	call	create	element,	I	have	a	parenthesis,	I'm	going	to	create	a	div.And
then	we're	not	going	to	have	any	props	because	we	haven't	talked	about	props	yet.So	I	set	that	one	to	now,	and	then	I'm	going	to	render	out	the	screen.This	is	a	little	store	like	that,	and	I'm	going	to	remove	the	sidebar,	we	can	see	the	component	here.So	this	is	instead	of	using	JSX.And	if	we	want	to	render	this	one	out,	instead	of	returning	this	one
here,	I'm	going	to	return	the	store.And	as	this	is	the	function	now,	I	also	have	to	call	it	like	this,	save	it.And	then	I'm	going	to	go	back	to	the	application.And	you	can	see	this	is	a	little	star,	so	it	renders	out	perfectly.And	this	is	just	a	small	example.And	I	want	to	just	for	you	to	notice	that	you	don't	need	to	use	JSX.And	this	is	actually	the	React
functionality	at	its	core.So	you	don't	have	to	use	JSX.But	we	are	going	to	use	JSX	because	it's	sweet,	and	it's	fun	to	work	with.And	I	think	actually	that	it	would	be	a	small	l	creating	applications	without	JSX	at	least	I	think	so.So,	I	remove	everything	I	created	here	and	save	the	file.Again,	just	make	sure	that	it	works	stored	here.And	it	works	and	that's
great.So	that's	a	little	bit	about	react	dot	create	element	and	using	react	Without	JSX,	just	a	small,	small	note	on	that	one,	I'm	not	going	to	go	any	deeper	into	it,	because	I	don't	think	it's	actually	relevant	to	use	react	without	JSX.So	that's	why.Okay,	I	talked	a	little	about	using	react	without	JSX.But	I	actually	don't	think	that's	a	great	idea.So	that's	why
I	also	want	to	talk	a	little	about	JSX	before	we	move	on	with	this	application.So	JSX	stands	for	JavaScript,	XML,	and	it's	pretty	similar	to	regular	HTML.So	if	we	take	a	look	here,	you	can	see	that	they	create	an	h1	tag	here	that	says	hello	word.And	this	looks	just	like	plain	HTML.But	as	they	say,	here,	this	fun	attack	syntax	is	neither	a	string	nor	HTML,
I	actually	don't	think	it's	a	fun	attack	as	to	say	here,	but	alright,	you	get	the	ID,	why	JSX.We	can	read	here	more	about	why	we	are	using	JSX.And	the	main	thing	here	thing	is	that	they	don't	want	to	put	markup	in	one	file	and	logic	in	another	file,	they	want	to	have	them	combined	in	one	file.And	that	may	sound	scary	for	some,	because	a	couple	of	years
ago,	you	shouldn't	ever	mix	them	together.But	in	react,	it	works	really	great.And	as	they	say,	here,	rack	components	contain	both	markup	and	logic.So	JSX	is	something	that	is	created	to	look	pretty	similar	to	HTML,	there	are	a	few	differences.And	I	wanted	to	talk	about	those	here.Because	in	this	case,	we	create	an	h1	element.And	that	looks	exactly
the	same.But	there	are	some	stuff	that	differ	from	regular	HTML.And	for	example,	you	can	see	you	can	embed	JavaScript	as	expressions	here.For	the	source	area	in	the	image	tag,	for	example,	you	can	use	curly	brackets,	and	then	you	embed	your	JavaScript	expression.And	that's	super	great	that	you	can	combine	them	this	way.And	also,	as	you	look	at
tab	index,	it's	camel	cased	that	differs	from	HTML.And	they	say	it	here	also	seems	JSX	is	closer	to	the	JavaScript,	then	to	HTML,	react,	Dom	uses	camel	case	property	naming	convention	instead	of	HTML	attribute	names.So	remember	that,	that	you	have	to	use	camel	case	in	JSX.And	there	are	some	few	differences.For	example,	when	you	set	a	class	on
an	element,	you	don't	use	the	class	keyword,	you	use	class	name,	camel	cased.And	they	also	mentioned	it	here.And	it	took	a	little	bit	of	time	for	me	to	get	used	to	this	one.And	no,	I	actually	typing	class	name	when	I	type	out	regular	HTML.And	also,	it's	good	to	know	that	JSX	is	quite	safe,	it	prevents	injection	attacks	and	stuff	like	that.So	I	think	you'll
learn	a	lot	about	JSX.As	we	go	along	in	this	course,	because	we	are	going	to	use	practical	examples	in	this	course,	not	the	most	important	part	is	to	remember	that	JSX	is	not	HTML.And	it's	also	used	camel	casing	when	you	create	an	attribute.Before	we	dive	in	and	create	our	components	with	state	and	props,	and	all	these	vital	things	in	react,	you	can
sit	down,	relax,	have	a	drink,	have	a	beer,	have	a	cup	of	tea,	or	whatever	you're	drinking.And	just	listen	to	me	in	this	video,	where	I'm	going	to	talk	a	little	about	props	and	state	in	react,	the	first	thing	you	can	do	is	to	imagine	that	this	is	a	room	seen	from	above.And	the	gray	circle	here	is	a	lamp	that's	not	turned	on.And	the	orange	one	is	a	lamp	that's
turned	on,	each	of	these	lamps	has	a	light	switch	that	is	often	on.So	if	I	click	this	one	here,	I	can	turn	this	light	on	and	the	light	switch	is	going	to	change	to	on.And	this	one	I	can	turn	it	off.So	both	lamps	are	off,	and	I	turn	this	one	on,	and	I	turn	this	one	on.And	this	is	made	possible	because	I	can	use	state	in	react.So	I	have	two	states	for	the	lamps.I
have	one	state	for	the	first	time	and	one	for	the	second	lamp	that	is	a	Boolean	that	is	telling	if	the	lamp	is	on	and	off.But	if	we	think	about	this,	we	actually	have	a	state	of	the	room	also,	because	we	need	a	state	also	for	the	light	switch	to	change	from	off	to	on.Because	these	are	kind	of	tied	together	so	that	you	can	look	at	the	state	in	different
perspectives.In	this	case,	I	will	look	at	the	state	from	the	room	perspective.So	I	haven't	placed	the	states	in	the	lamps	or	in	the	light	switches,	I	have	placed	the	states	in	the	room	itself	because	we	have	a	room	stage	and	for	the	room	is	going	to	be	if	the	lamps	and	the	light	switches	are	on	or	off.So	we	have	a	state	for	the	room	itself.And	this	is	what	I
talked	about	in	the	for	example	the	React	documentation,	they	tell	you	that	you	can	lift	up	the	state	to	a	parent	component	if	you	want	to	use	that	stayed	in	multiple	child	components.Because	if	we	placed	the	state	in	the	lamp	itself,	for	example,	we	could	only	access	that	state	in	the	lamp	unto	its	child	components.Of	course,	we	could	place	the	light
switches	as	a	child	to	the	lamp,	but	that	wouldn't	be	the	most	effective	way	of	doing	it.And	it	would	complicate	things	if	you	want	to	reuse	your	code.So	what	I've	done	here	is	study	is	that	I	had	this	room	here	and	I	placed	the	components	in	the	room	and	I'm	also	going	to	have	the	state	in	the	room	so	we	can	use	that	state	both	for	the	lamps	and	the
light	switches	and	I'm	going	to	show	you	how	Do	this	now,	and	also	talk	a	little	bit	more	about	state	and	props.So	if	we	take	a	look	inside	of	the	code	here,	this	is	the	application	that	I	created	for	you.You	can	also	open	it	up	from	the	source	files	in	this	course,	I	provided	it	there.So	I	have	the	index	file,	the	standard	index	file	that	shows	the	app
component,	and	app	component	is	actually	going	to	be	the	room.So	I	could	also	name	this	room	because	this	is	actually	the	room	component.And	as	you	can	see	here,	in	the	room	component,	I'm	creating	two	states.In	react	when	you	create	a	state	with	hooks,	you	use	something	that's	called	the	use	state	hook.Before	we	had	hooks,	we	had	to	use
classes	to	have	state	in	them.So	you	couldn't	ever	create	a	functional	component	that	has	stayed	in	them.But	now	we	have	hooks,	and	that	means	that	we	can	have	stateful	functional	components.And	that's	sweet.So	when	we	call	this	use	state	hook,	we	can	initialize	it	with	an	initial	value.So	in	this	case,	I'm	giving	it	false,	because	I	want	this	lamp	to
be	turned	off	initially.Then	I	do	something	that's	called	ear	six	destruction	here	on	destruction	of	this	array	that	I	get	back	from	the	use	state	hook.So	we	can	name	our	state	here	to	whatever	we	want.In	this	case,	I	name	it	is	lamp	one	on	and	then	we	have	the	Center	for	the	state	center	is	lamp	one	on.And	there's	a	few	things	you	should	know	about
state	in	react.And	the	first	one	is	that	you	should	look	at	the	state	as	immutable,	you	should	never	mutate	the	state,	then	that	means	that	you	always	should	use	the	state	setter	that	you	get	back	to	set	the	state	in	react.If	you're	modifying	the	state	directly,	for	example,	try	to	change	this	one.This	means	that	your	component	won't	rerender.And	that's
no	good.And	it	can	also	cause	a	lot	of	trouble	in	the	future	for	you	in	the	application.But	if	you	use	the	setter	and	change	the	state	and	don't	mutate	the	state,	your	component	will	rerender	and	update	the	DOM.And	this	is	how	stuff	works	in	react,	you	update	the	DOM	when	your	components	rerender.And	one	more	thing	with	functional	components	is
that	we	can	add	as	many	states	as	we	want	with	the	use	state	hook	in	the	class	components,	you	can	only	have	one	state,	so	you	have	to	turn	to	create	an	object	with	different	properties	to	hold	your	state.So	this	is	super	sweet,	we	can	divide	the	states	up	now	depending	on	how	we	want	to	structure	the	state.So	in	this	case,	I	created	two	states,	I	have
one	for	the	lamp	one,	and	I	have	one	for	lamp	two.So	they	are	doing	the	exact	same	thing.The	only	difference	here	is	when	I	initialize	it,	I	set	this	one	to	true	and	this	will	turn	lamp	two	on.Alright,	now	I	have	two	functions.And	these	ones	are	going	to	be	called	when	we	click	the	light	switch.So	I	have	one	for	the	light	switch	one	and	one	for	the	light
switch	two,	you	could	have	one	function	instead.But	I	want	to	make	it	really,	really	clear	on	how	stuff	works.So	that's	why	I	created	two	of	them.So	we	have	one	function	for	the	switch	one	and	one	for	the	switch	two.And	this	one	will	set	is	lamp	one,	that's	the	setter	for	the	state	one	for	the	lamp	one.And	what	I	do	here	is	that	I	provide	it	with	an	inline
function.And	when	you	provide	the	state	setter	with	a	function,	it	will	get	called	with	the	previous	state.So	in	this	case,	I'm	going	to	flip	that	boolean	value.So	when	I	click	the	button,	the	first	time	this	value	is	going	to	get	be	true	instead	because	it's	false	initially.And	this	one	for	a	button	two	is	going	to	be	false	because	it's	true.All	right,	these	are
functions	for	a	light	switches.So	if	we	looked	at	the	JSX,	here,	what	we	return	to	the	dome,	this	one	is	a	room	component.And	if	I	go	up	here,	you	can	see	that	this	is	the	style	component	that	we're	also	going	to	talk	a	lot	about	in	this	course,	I	create	a	style	component,	that's	a	div	here.So	I	set	some	styling	on	that	one	on	the	room	itself,	I	make	it	500
pixels	width	and	500	pixels	in	height,	then	I	set	a	border	on	it,	and	the	margin	zero	in	order	is	going	to	center	it	on	the	screen.So	everything	is	wrapped	in	this	room	component,	then	I	have	a	component,	that's	the	lamp,	I'm	going	to	talk	about	that	in	a	second.And	I	also	have	the	light	switch.So	we	have	the	state	in	this	app	component.That's	the
room.So	this	is	where	I	kind	of	gather	all	the	states	for	this	little	simple	application.And	this	way,	I	can	use	this	state	in	both	the	lamp	component	and	the	light	switch.Because	as	you	can	see	here	for	the	lamp	component	i	created	something	that's	called	props,	props	is	something	that	you	can	create	and	that	will	get	sent	along	into	your	component
that	you	create	props	is	an	object.So	you	can	create	as	many	properties	on	that	object	as	you	want.In	this	case,	I	created	a	lamp	on	Prop.So	this	one	will	be	sent	into	the	lamp	component	in	the	prop	object.I	also	created	a	prop	that's	called	position.And	this	is	how	I	can	make	the	lamp	appear	on	the	left	or	on	the	right	in	the	room.And	lamp	on	is	going
to	be	the	state	for	the	lamps.So	this	one	is	going	to	be	a	Boolean.And	that	way	this	component	will	know	if	the	lamp	is	on	and	off.And	I'm	going	to	show	you	that	in	a	second.And	I	do	the	same	with	a	light	switch.And	for	this	one	I	have	the	callback	as	I	showed	up	here.I	give	this	one	a	prop	that	I	call	callback.It	doesn't	have	to	be	Call	callback,	that's	the
name	that	I	chose.And	the	switch	on,	I'm	going	to	give	it	a	lamp	state	for	this	one.So	you	can	see	that	I	use	the	lamp	states	for	both	the	lamp	and	the	light	switches.And	this	is	what	I	talked	about	before,	if	we	created	the	state	for	the	lamp	in	the	lamp	itself,	we	wouldn't	be	able	to	access	this	state	for	the	light	switch,	then	we	have	to	create	the	light
switch	as	a	child	of	the	lamp.And	that's	no	good,	as	you	probably	can	see	now,	because	now	we	can	place	as	many	lamps	and	light	switches	we	want	in	our	room.So	it	would	be	much	harder	to	do	it	if	we	place	the	stain	in	the	lamp	itself.And	I	also	have	a	position	prop	for	the	light	switch.So	let's	go	inside	of	the	lamp	component	that	I	created	here.I	also
have	a	wrapper	div	for	this	one	that's	a	styled	component.So	I	wrap	everything	in	that	div.And	the	interesting	thing	with	style	components	is	that	they	also	can	have	props	because	they	are	also	valid	react	components.So	we	can	use	props	in	our	style	components	to	modify	our	CSS.And	that's	one	of	the	super	strengths	with	style	components,	I	think,
because	as	you	can	see	here,	this	is	this	is	something	that's	called	a	template	literal.And	in	this	template	literal,	we	can	grab	the	props	that	are	sent	into	this	component.So	in	this	case,	I	create	dollar	sign	and	curly	brackets,	and	I	can	use	a	JavaScript	expression.And	I	have	this	inline	function	here	that	gets	the	props.So	if	we	look	at	the	wrapper
component	down	here,	you	can	see	that	I	also	send	in	a	prop	lamp	on	and	the	position.So	I'm	just	sending	along	these	props	that	are	initially	sent	into	the	lamp	component.So	I	get	them	in	the	lab	component,	and	then	I	also	send	them	along	to	the	wrapper	component.That's	the	style	component.And	by	doing	this,	I	can,	for	example,	check	here,	if	the
props	dot	position	equals	to	the	left,	then	I'm	going	to	set	the	left	value	to	20	pixels.Otherwise,	I	set	it	to	three	or	underneath	two	pixels,	and	that	will	place	it	to	the	right	in	the	room.So	this	way,	I	can	modify	my	CSS	and	make	it	very,	very	dynamic.So	that's	really	sweet	that	you	also	can	use	props	in	the	style	components.Alright,	that's	how	style
component	and	props	works.So	if	we	look	at	the	lab	component	here,	I'm	sending	in	these	props	here.And	what	I'm	doing	here	is	I'm	using	iOS	six	destructuring.So	from	the	objects	that	we	get	that	you	usually	call	it	props,	I'm	destructuring	out	these	values	that	are	sending,	if	I	didn't	do	the	destructuring	here,	and	I	just	do	it	like	this,	you	can	see	that
it	wants	me	here	now,	then	I	have	to	type	in	props,	dot	and	props,	not	because	the	props	is	an	object,	so	I	have	to	grab	those	specific	properties	from	the	toggle.But	if	I	destructor	it	out	as	I	do,	here,	I	don't	have	to	type	that	in	every	time.So	I	just	structure	out	the	properties	here	instead.And	there's	a	few	things	you	should	know	about	props	because
they	differ	from	state.And	the	main	difference	is	that	the	props	are	passed	into	the	components.And	you	should	never	ever	change	the	props	in	the	component	that	gets	the	props,	the	props,	values	are	changed	from	the	parent	that	is	sending	in	the	props	to	the	component.So	if	the	props	change	in	the	parent,	it's	also	going	to	rerender,	this	component
here.So	never	ever	change	the	props	values	in	this	component,	you	can	change	the	state	in	the	component	with	a	state	setter.And	that's	how	you,	for	example,	can	trigger	a	rerender.When	you	change	the	state	in	a	component.So	that's	fine,	you	should	change	the	state	in	the	component	with	the	setters.But	a	prompt	should	never	be	ashamed	in	a
component	that	receives	the	props.When	the	prop	value	changes,	this	component	will	rerender	and	it	will	have	the	new	value	in	the	props.So	that's	how	props	works.All	right,	we	can	check	out	the	light	switch.Also,	I'm	doing	the	same	here	I	am	destructuring	out	the	props	here.And	I	have	this	bottom	component.That's	the	star	component.And	I	modify
it	with	props	here	also.So	I'm	doing	the	exact	same	thing	here.And	you	can	see	here	that	are	sending	the	callback,	that's	the	function	that	I	have	in	the	app	component	here.So	that's	the	one	I'm	sending	in	with	a	callback	prop	into	the	light	switch.And	then	I	have	my	button,	and	the	button	has	an	onClick	handler	an	onClick	handler	will	trigger	this
callback	function.And	this	makes	this	component	very	dynamic	because	by	using	props,	you	can	make	your	component	dynamic.And	you	can	use	it	in	different	situations.In	this	case,	I	can	send	in	whatever	callback	function	I	want	to	be	triggered	when	I	click	on	the	button.So	that	means	that	I	can	use	this	button	in	different	situations.In	this	case,	I
also	showing	the	switch	on	and	off	because	I	was	sending	in	the	prop	switch	on.So	it	probably	won't	be	useful,	too	much	less	than	this	use	case	specifically.But	if	you	want	you	can	use	this	button	for	something	else	done	to	trigger	a	lamp	to	be	turned	on	or	off,	you	can	turn	something	else	on	and	off	and	have	another	callback	function	and	that	will
work.So	that's	what	you	use	props	for.Also,	you	can	make	your	components	dynamic	and	reusable	by	giving	them	some	props.And	by	using	these	props	inside	of	the	component.You	can	adapt	your	component	and	change	the	logic	you	can	change	the	JSX	and	what	it	should	render	and	stuff	like	that.So	that	is	really	useful	to	us.props	for	that.Alright,	so
that's	short	on	state	and	props.I	hope	this	one	gave	you	some	insight	before	we	start	creating	our	own.So	let's	move	on	in	the	next	video,	I'm	going	to	talk	more	about	style	components	and	what	they	are.There's	one	less	thing	I	want	to	talk	about	before	we	start	creating	some	code	for	real.And	that	is	styled	components.Because	in	the	next	video,
we're	going	to	create	a	global	styles	for	our	application.And	we're	going	to	do	that	with	styled	components.So	just	a	short	talk	about	style	components	and	why	it's	so	great.And	I	think	the	biggest	benefit	is	one	that	you	get	scoped	CSS.And	that	means	that	you	can	have	the	same	class	names	for	different	components,	it	doesn't	matter	because	it's
scoped	to	that	component.And	number	two	is	that	you	can	use	syntax,	kind	of	like	sass,	for	example,	you	can	nest	stuff,	and	you	don't	need	to	have	polyfills,	and	stuff	like	that,	it	will	create	all	that	automatically	for	you.And	number	three,	is	that	you	can	have	props	inside	of	it.And	props	is	something	that	we're	going	to	talk	a	lot	about	in	this	course,
because	it's	an	essential	part	in	react.And	that	means	that	you	can	modify	the	CSS	by	sending	in	different	props	to	your	styles,	you	don't	need	to	know	exactly	now	how	props	work,	because	we're	going	to	talk	about	that	later	in	the	course.And	also,	you	can	use	just	plain	regular	CSS,	and	that's	super	great	also.So	that	is	some	benefits	that	style
components	will	provide	to	you	when	using	it	in	your	application.So	we	already	install	this	library.And	when	you	use	it,	you	have	to	import	something	that's	called	style,	I	think	they	have	an	example	down	here,	here,	input	styled	from	styled	components.And	style	is	an	object	that	holds	different	properties.For	example,	in	this	case,	they	want	to	style	a
bottom.So	these	properties	corresponds	to	what	they	are	called	in	HTML.So	if	you	want	to	style	a	button,	if	you	want	to	create	a	style	component,	that	is	a	button,	you	use	style	dot	button,	and	then	you	have	a	template	literal.So	this	is	something	that's	called	a	tag	template	literal.And	that	is	a	function	that	you	call	with	a	template	literal.So	this	is	e6
syntax	in	JavaScript.And	it's	super	great,	because	if	we	move	up	here,	again,	you	can	see,	we	have	this	template	literal.Here,	you	have	the	starting	backtick.And	you	have	the	end	back	to	here.And	inside	of	here,	we	can	write	our	CSS.In	this	case,	they're	using	style	dot	A,	because	they	want	to	style	an	a	tag.And	then	they	do	some	stuff	here,	plain
regular	CSS.But	here	is	something	that's	happening.That's	not	plain	CSS.And	this	is	because	we	using	a	template	literal	here,	we	can	use	JavaScript	expressions	inside	of	this	template	literal.And	when	you	want	to	use	an	expression	inside	of	a	template	literal,	you	do	that	with	$1	sign,	and	you	wrap	it	inside	of	curly	brackets.And	then	you	can	have	any
JavaScript	expression	that	you	want	inside	of	here,	and	it	will	interpolate	it	into	the	string.And	in	this	case,	you	can	see	that	they	have	their	props,	and	they	have	an	inline	arrow	function.And	from	the	props,	they	grab	a	prop.That's	called	primary.And	you	can	set	this	CSS	conditionally,	depending	on	this	primary	prop.And	we're	going	to	talk	more
about	this	later,	as	I	told	you,	so	don't	get	intimidated.If	you	don't	understand	this	syntax	right	now,	hopefully,	you	will	understand	it	fully	when	this	course	is	over.This	is	just	a	short	introduction,	before	we	create	the	global	styling.And	we're	going	to	do	that	in	the	next	video.It's	time	to	start	coding.And	we're	going	to	start	by	creating	some	global
styles.The	first	thing	you	have	to	do	is	to	start	up	your	dev	environment.And	you	do	that	by	navigating	inside	of	the	folder	of	your	application.And	then	you	type	NPM	start,	and	that	will	start	everything	up	for	you.And	hopefully	it	looks	something	like	this,	it	should	say	start	here.And	it's	always	a	good	idea	to	have	your	console	open.I'm	on	Chrome
now.So	it	looks	something	like	this.And	also	I	can	recommend	an	extension.That's	called	react	developer	tools.And	then	you	will	have	access	to	something	that's	called	components	here.And	if	we	open	that	up,	we	can	see	our	application	here.But	in	this	case,	we	don't	have	any	components	yet.So	it	will	just	show	the	app	component	here.But	this	is	a
great	tool	when	you	develop	stuff	in	react.So	highly	recommended	install	react	developer	tools.Okay,	so	let's	move	back	to	our	application	inside	of	Visual	Studio	code,	or	whatever	ID	or	using	an	inside	src	folder,	we're	going	to	create	a	new	file	that	I'm	going	to	call	that	I'm	going	to	call	global	style,	capital	G	and	capital	s.js.So	this	is	going	to	hold	all
the	global	styles	for	our	application.And	we're	going	to	create	a	global	styles	with	style	components.So	that's	why	we	have	to	import	a	special	thing	from	the	style	components.That's	called	create	global	style.So	we	start	by	doing	that	import	curly	brackets.Create	Lobel	style	camel	case,	that	means	that	there's	a	capital	D	and	a	capital	S.And	we	ported
from	style	dash	components.And	this	is	how	we	import	the	module	with	e6	syntax.In	this	case,	it's	not	what's	called	the	default	export	from	this	library.So	that's	why	we	grabbing	it	inside	of	the	curly	brackets,	we	are	going	to	create	default	exports	from	our	different	components.And	then	we	don't	need	to	use	the	curly	brackets.But	I'm	going	to	show
you	that	later	when	we	create	our	first	component.Okay,	so	we	have	this	create	global	style	method	that	we	imported.Here,	we	are	going	to	use	a	global	styles	inside	of	our	app	component	later,	meaning	that	we	want	to	import	it	here	and	use	it	down	here	in	the	JSX.So	that	also	means	that	we	have	to	export	this	styled	component	from	this	file,	so
export.And	this	is	a	const.Also	e6	syntax,	it	stands	for	constant.So	that's	what	we	have	in	JavaScript.Now	we	have	let's	we	have	const.And	we	have	various,	I'm	always	using	const.Before	I	know	if	this	one	is	going	to	change,	and	then	I	change	it	to	a	left,	it's	going	to	change	in	the	application.But	usually	const	will	do,	at	least	when	you	do	functional
programming,	as	we	mostly	going	to	do	in	this	course.So	const	means	that	this	one	is	not	going	to	change.As	with	everything,	there	are	special	cases	when	it	can	change.For	example,	if	you	create	an	object	with	a	const,	you	can	change	the	properties	in	that	object,	but	you	can't	change	the	object	itself.Alright,	enough	about	that.This	one	is	going	to	be
called	Global	style.And	this	is	a	component,	and	every	component	that	you	create	in	react	is	going	to	have	a	capital	letter	to	begin	with.So	capital	G	and	capital	S	in	this	case,	and	it's	going	to	equal	and	then	we	call	this	method	that	we	imported	up	here,	create	global	style.And	in	this	case,	we're	not	going	to	have	a	dot	and	something	here	because	this
is	the	global	style.So	we're	going	to	have	double	backticks,	creating	our	template	literal.And	then	I	do	like	this.And	then	we	can	write	our	CSS	inside	of	this	template	literal.And	the	rest	of	your	is	going	to	be	regular	plain	CSS.So	first,	I	want	to	set	up	some	CSS	variables.To	call	on	Route,	we	do	that	on	the	route.And	when	you	create	a	CSS	variable,
you	do	that	with	double	dash.And	then	you	have	your	variable	name.So	max	width,	this	is	camel	cased,	as	you	can	see	here,	are	going	to	set	the	max	width	to	1280	pixels.And	then	I	have	another	variable	double	dash	white.And	then	I	set	my	white	color,	another	variable	double	dash	light	gray.This	one	is	going	to	be	E	double	dash	med	grade,	or
medium	grade.And	this	one	is	going	to	be	335	re	535	double	dash,	dark	gray.And	this	one	is	one	c	one	c	one	C	double	dash	font	super	big.That's	a	funny	name,	I	forgot	that	I	call	it	that.All	right,	you	can	call	it	whatever	you	want.This	one	is	going	to	be	2.5	REM.And	the	next	one	is	double	dash	and	font	big	1.5	REM	double	dash	font	med	or	medium
1.2.REM.And	the	last	one	is	going	to	be	double	dash	font	small,	one	REM.And	that's	our	CSS	variables	that	we're	going	to	use	for	this	application.Then	I'm	going	to	set	the	font	for	the	whole	application	and	also	do	some	resetting	here.So	I	have	an	asterisk.Like	that,	I	set	the	box	sizing	to	border	dash	box.And	then	I	set	the	font	family	to	able	and	that's
the	Google	Font	that	is	important	from	the	index	dot	HTML	file.And	then	a	how	to	backup	font	or	sans	serif.Alright,	that's	the	resetting	then	on	the	body.I'm	going	to	set	a	few	things	also.So	we're	going	to	set	the	margin	zero,	the	padding	is	going	to	be	zero,	like	that.And	then	as	I	told	you	with	start	components,	you	can	nest	stuff	inside	of	the	body,
we	can	nest	the	h1	tag	like	this,	and	set	the	font	size	to	two	REM	font	weight	is	going	to	be	600	and	the	color	and	I'm	going	to	grab	this	from	my	variables	that	I	created	up	here.And	when	you	grab	a	variable	in	CSS,	you	do	that	by	typing	out	various	parenthesis	and	then	the	variable	name	in	this	case	it's	going	to	be	double	dash	white.So	that's	the	h1
then	I'm	going	to	set	the	age	three	The	font	size	is	going	to	be	1.1	or	M.And	the	font	weight	is	going	to	be	600	on	that	one	also.And	then	one	more	thing	to	do	here,	and	that's	the	p	tag.So	font	size,	one	REM	for	the	p	tag,	and	the	color	is	also	going	to	be	white.So	var,	double	dash	white.And	then	I	also	do	some	auto	formatting.And	sometimes	when	I	do
this,	create	global	styling,	the	auto	formatting	doesn't	work.I	don't	know	why.So	I	do	it	manually	instead	and	save	the	file.Always	remember	to	save	your	files,	it's	very	easy	to	forget	to	save	the	file,	and	then	it	doesn't	work.So	this	is	everything	that	we	need	for	our	global	styles.Now	we're	going	to	move	inside	of	the	app.js	file.And	up	here	where	we
import	react,	we	can	mark	it	with	styles.And	then	we	import	global	style	from	dot	forward	slash	global	style.So	this	means	that	we	import	in	this	one	that	we	created	here,	this	constants	called	Global	style,	we	can	import	it	because	we	export	it	inside	of	this	file.We	don't	do	a	default	export,	as	I'm	going	to	show	you	when	we	create	components.That's
why	we	use	curly	brackets	and	import	this	as	a	named	import.And	we're	importing	it	from	the	file	that's	called	Global	style.You	don't	have	to	type	out.js.It's	enough	we	just	typing	out	global	style,	it	will	figure	the	file	extension	out	itself.Right	there	we	have	our	global	stock	component.But	how	do	we	use	it	in	our	application,	we	should	place	this	at	the
top	level	of	our	application.And	as	we're	going	to	have	a	component	that	wraps	are	complete	application.In	this	case,	it's	the	div	that's	called	app,	it	has	a	class	name	of	app,	we're	going	to	change	this	out	later	when	we	have	the	routing	setup.But	for	now,	that's	a	wrapping	div.So	inside	of	that	one,	we	can	use	a	global	style.And	we	self	close	it	like
this,	we	don't	have	any	props	to	send	into	this	one.And	we're	not	setting	a	class	name	or	stuff	like	that.So	when	you	use	the	playing	component	without	class	name,	and	props	in	react,	you	do	it	like	this.And	this	is	very	similar	to	an	HTML	tag.So	we	save	the	file,	go	back	to	a	browser.And	the	only	thing	we	can	see	now	is	that	the	margins	and	padding
have	changed	here,	it's	just	right	at	the	edges	here	now.And	it	wasn't	that	before.So	we	know	that	our	global	styles	are	working.And	we	can	actually	just	comment	this	one	out,	save	the	file,	go	back	to	a	browser.And	you	can	see	that	the	margin	is	there	now.That	way,	we	know	that	it's	working.And	hopefully	we	didn't	do	any	mistake	in	the	CSS
itself.So	it	should	work.Otherwise,	we	have	to	adjust	that	later.All	right,	in	the	next	video,	we're	going	to	start	creating	the	header	component	for	the	application.So	we're	going	to	create	our	first	real	component	in	this	application.And	it's	going	to	be	the	header	component.So	the	first	thing	we	do	when	we	create	a	new	component	is	to	create	a	file	for
that	component.And	you	can	see	that	we	have	our	src	folder	here	and	we	have	an	images	folder.But	we	don't	have	a	folder,	that's	going	to	hold	our	components	by	usually	create	a	folder,	that's	called	components.That's	what	I'm	going	to	do	now.components,	all	lowercase	letters,	and	inside	of	this	folder,	we're	going	to	create	all	of	our
components.And	the	thing	is	that	the	structuring	of	an	application	is	something	that's	highly	subjective.So	you	can	have	your	own	opinions	on	how	you	want	to	structure	it.And	if	you	want	to	structure	it	in	a	different	way,	you	can	of	course	do	that.But	please	be	aware	that	this	course	will	have	this	folder	structure.And	you	have	to	think	about	it.If	you
change	stuff	yourself.If	you	just	want	to	focus	on	learning	react,	I	highly	recommend	that	you	use	this	folder	structure	that	I	created	for	the	course,	I	also	going	to	have	a	folder	for	each	component	because	I	want	to	separate	out	my	styles	and	have	the	styles	in	separate	file	and	have	the	component	itself	in	a	separate	file,	I've	created	this	course	you
don't	have	to	create	the	styles	if	you	want.So	that's	easier	for	me	to	handle	it	that	way	by	separating	the	mouth.So	therefore,	I	also	think	it's	nice	to	have	everything	related	to	component	in	its	own	folder.So	we're	going	to	create	a	new	folder	inside	of	the	components	folder.That's	called	header.capital	H.So	we	inside	the	header	folder,	and	this	is
something	in	Visual	Studio	code.It	won't	show	a	complete	tree	structure	here	when	you	just	have	one	folder.But	this	will	change	later.But	we're	inside	a	header	folder.And	inside	a	header	folder,	I	got	to	create	a	new	file	that's	called	index.js.And	this	is	also	something	that's	highly	subjective	actually,	because	I'm	going	to	create	my	component	in	the
index.js	file.So	we're	going	to	have	one	folder	for	each	component,	and	each	folder	is	going	to	have	an	index	dot	j	s	file.And	this	is	great	when	you	import	stuff	as	I'm	going	to	show	you	later.But	it's	not	that	great	if	you,	for	example,	have	10	components	open	up	here,	they	all	are	going	to	be	named	index	dot	j	s.So	that's	the	downside	by	doing	it	like
this.But	this	is	a	fairly	small	application.So	I	don't	think	it	matters.But	I	can	actually	show	this	if	we	have	a	component	that's	named	test	component,	we	import	it	like	this.And	from	dot	forward	slash,	we	have	our	folder,	that's	called	test	component.Like	this,	of	course,	we	don't	have	this	one	Oh,	this	is	just	an	example.It's	exported	as	a	default
export.So	we	import	it	like	test	component	without	the	curly	brackets,	we	can	name	it	to	whatever	we	want.But	I	like	to	name	them	just	exactly	as	they	are	in	the	files.And	we	import	it	from	the	test	component	folder.And	then	if	we	have	a	file,	that's	called	index.js,	we	don't	have	to	type	out	anything	more	here,	it	will	automatically	grab	that	index.js
file.But	if	we	named	this	file,	for	example,	test	component,	also,	we	have	to	specify	it	like	this.We	have	to	type	it	out	two	times.And	I	don't	like	to	have	to	type	it	in	two	times.So	that's	why	I'm	using	an	index.js	file	instead,	as	this	is	a	fairly	small	application.So	we	don't	get	confused	up	here	when	we	have	a	lot	of	components	open.So	that's	my
explanation	to	why	I'm	using	this	structure.And	that's	also	why	are	named	my	files	like	this.Alright,	so	delete	this	one	here,	we're	also	going	to	create	placeholder	components	for	the	styles,	because	we're	going	to	use	the	style	components	inside	of	this	component	itself.So	that's	what	we're	going	to	do.And	we	do	that	by	creating	another	file.That's
called	heather.styles.js.And	this	is	how	I	like	to	name	my	style	component	files.So	I	have	the	component	name,	and	then	I	have	a	dot,	and	then	I	mark	it	with	styles.And	then	I	have	a.on,	the	file	extension.Alright,	so	from	the	style	components,	we	import	styled,	like	this	import	style	from	style	components,	components,	it	should	be	an	S.Now,	I'm	just
going	to	create	placeholder	components	because	I	am	going	to	create	the	styles	in	the	next	video.So	if	you	have	choose	to	skip	the	styles,	you	don't	have	to	do	them.Justice	before,	you	always	have	to	export	these	ones,	because	they	are	in	a	separate	file,	and	we	are	going	to	import	them	in	the	index.js	file	soon.Export	const	I	have	a	component	that	I
like	to	name	wrapper,	and	it's	going	to	be	a	style	dot	div.So	this	is	a	div	that	I'm	going	to	start.And	I	just	have	the	double	takes.And	I	ended	there	because	this	is	just	a	placeholder	now,	so	we	could	just	copy	this	one.But	as	I	told	you,	I	want	to	repeat	stuff	and	type	it	in	many	times	when	you	learn	things.So	we	export	const,	I	have	another	component
that	is	going	to	be	called	content.And	it	equals	from	the	start,	we	have	another	div	double	backticks	and	then	we	export	const	logo,	IMD	and	it	equals	a	style.And	this	is	an	image,	it's	the	logo	that	we're	going	to	style,	double	backticks	and	and	it	and	then	we	export	const	TMDB	logo.img,	be	careful	with	the	capital	letters	here.This	is	the	Movie
Database	logo.So	capital	TMDB,	capital	L	and	capital	II.From	the	styled,	we're	going	to	style	another	image	like	this.So	this	is	the	four	style	components	that	we're	going	to	use	for	this	react	component.So	save	the	file,	and	I'm	going	to	show	you	in	the	next	video,	how	to	create	the	styles	the	actual	CSS,	but	move	inside	of	the	index.js,	we're	going	to
create	our	header	component.Now,	the	first	thing	you	do	when	you	create	a	react	component	is	to	import	react	capital	or	from	react.And	that	will	make	sure	that	we	are	using	react	in	this	component.Then	I	have	some	images	for	the	logo.So	if	we	look	inside	of	the	image	folder,	I	have	the	TMDB	logo.This	is	an	SVD.So	we	just	see	some	code	here.And
then	we	also	have	the	React	movie	logo.And	that's	also	an	SVG.So	move	back	to	the	index	dot	j	s,	we're	going	to	import	this	ones	now.So	import	our	IMDb	logo,	you	can	name	it	to	whatever	you	want	here,	but	I	chose	to	name	it	RMD	v	logo,	you	could	just	name	it	logo,	of	course	if	you	want	to	do	that,	but	I	want	to	separate	them	out	because	we're
going	to	have	the	TMDB	logo	also.And	we're	going	to	import	it	from	dot	dot	forward	slash	that's	in	the	header	folder	that	we	want	to	go	up	one	more	folder	so	dot	dot	forward	slash	again.And	then	we	have	our	images	folder.And	then	we	grab	the	React	dash	movie	dash	logo	dot	SVG.In	this	case,	it's	really	important	that	you	also	type	out	the	SVG
extension,	otherwise	it	won't	work	when	it's	an	image.So	that's	the	rmvb	logo.Then	we	import	the	TMDB	logo	from	doc	dot	forward	slash	dot	dot	forward	slash	images,	forward	slash	TMDB,	underscore	logo	dot	SVG,	like	this.And	as	you	can	see,	this	can	be	a	really	long	file	path	here.And	that's	no	good.In	some	cases,	of	course,	you	could	set	up	this
with	create	react	app,	so	you	use	absolute	important	step.But	I	choose	to	not	do	this	in	this	course,	as	I	want	this	to	be	kind	of	beginner	friendly.And	to	be	honest,	we're	not	going	to	have	that	long	file	path.So	that's	why	Okay,	so	that's	our	logos.That's	our	images	for	the	logos	down,	we're	going	to	import	the	styles	that	we	created	inherit	old	styles	dot
j,	s,	because	we	export	them	here,	as	I	told	you,	so	we	want	to	import	them	in	this	component.So	import	curly	brackets,	we	have	our	wrapper,	we	have	our	content.We	have	our	logo,	IMD,	we	have	our	TMDB	logo,	no	logo,	IMG	TMDB	logo	IMG.And	we're	going	to	import	this	once	from	dot	forward	slash	header	dot	styles	ended	with	a	semi	colon.I'm
going	to	remove	this	sidebar	here	so	we	can	see	what	we're	doing.That's	it,	we	have	everything	we	need	to	assemble	this	component	for	now.So	we're	going	to	create	a	component	that's	named	header.And	we're	going	to	use	just	functional	components	in	our	application,	because	now	you	can	have	stayed	in	your	functional	components.A	couple	of
years	ago,	you	had	to	create	a	class	if	you	want	to	have	some	state,	but	now	we	have	hooked	and	we	can	use	just	functional	components.So	I	like	to	create	my	components	with	an	arrow	function.So	cost	header	equals	parenthesis,	and	a	fat	arrow.And	that's	an	arrow	function,	you	can	have	regular	function	if	you	want	to	have	that	also.And	then	of
course,	you	just	do	it	like	this	instead	function	header.You	have	curly	brackets,	but	I	like	to	have	the	arrow	function.And	that's	because	you	can	make	an	implicit	return	like	this,	if	we	just	returning	JSX,	we	can	add	parentheses,	and	you	don't	need	to	type	out	return.And	in	our	case,	we're	going	to	have	the	wrapper.That's	the	style	component	that	we
created.And	inside	of	the	wrapper,	we're	going	to	have	the	content.That's	also	a	style	component	that	we	created.And	then	I'm	going	to	have	the	logo	IMG.And	we	can	set	the	source	on	this	one	because	this	is	an	image	tag	that	we	styled.So	we	can	use	the	same	attribute	the	SRC	is	going	to	equal	and	we	have	imported	our	our	IMDb	logo,	or	IMDb
logo,	like	this	was	set	on	OLT.Now	we	can	name	it	or	IMDb	dash	logo.And	then	we	can	self	close	it	like	this.So	that's	a	logo	for	this	application.And	we	have	the	Movie	Database	logo	TMDB	logo,	IMG	we	have	the	SRC,	it's	going	to	be	the	TMDB	logo	IMG	and	we	set	the	old	TMDB	dash	logo,	and	we	self	close	it,	do	some	auto	formatting.And	now	you
can	see.Okay,	I	just	named	it	TMDB	logo,	of	course,	that	style	component,	we	shouldn't	use	that.So	TMDB	logo	course.Now	you	can	see	that	it	complains	here,	because	we're	not	exporting	this	one,	it	says	it's	never	used.And	that's	because	we	don't	export	it.You	should	always	export	it.And	I	like	to	do	the	export	here	at	the	bottom.So	export	default
header.And	this	is	also	a	sixth	syntax	for	exporting	something.So	in	this	case,	we	don't	have	a	named	export,	we	export	it	as	a	default.Some	people	like	to	have	their	export	here,	instead,	I	don't	like	that.So	that's	why	I	have	it	at	the	bottom	here.But	you	can	do	however	you	want.And	this	is	our	header	component	for	now.But	we're	not	actually	using
it.If	we	go	back	to	our	application	here,	you	can	see	that	nothing	has	happened	because	we	have	created	a	component,	but	we're	not	actually	using	it	yet.So	we	have	to	do	something	about	that.So	let's	go	back	to	our	app.js	file.And	inside	of	this	div	here	the	wrapping	div.This	is	also	something	that	you	have	to	know	because	in	react	you	can	always
just	return	one	component,	you	have	to	wrap	the	components	if	you	have	multiple	of	them	in	another	component	or	in	something	that's	called	a	fragment	that	I'm	going	to	talk	about	later	in	this	course.So	inside	of	here,	we're	going	to	have	Our	header	component,	but	first,	we	have	to	import	it,	of	course.So	what	I	like	to	do,	I	like	to	mark	it	with
components,	like	this.And	then	I	import	Heather	from	dot	forward	slash	components	forward	slash	Heather.Like	this,	when	you	want	to	use	a	component	in	react,	you	have	to	import	it	first	like	this,	this	is	a	module	that	we	import,	our	component	is	a	module	that	we	import	with	EF	six	syntax	like	this,	right,	and	then	we	can	use	the	component	here	for
now	we	don't	have	any	props	for	this	one.So	just	as	we	did	with	the	global	style,	we	can	insert	the	component	here	down	in	the	JSX.And	we	have	our	header.So	do	some	auto	formatting	and	save	it.And	if	we	go	back	to	our	browser,	you	can	see	that	we	can't	really	see	the	images	now.And	that's	because	we	haven't	set	the	styling	for	the	images	now.So
that's	what	we're	going	to	do	in	the	next	video.Or	if	you	choose	to	not	create	the	styles,	you	probably	will	see	the	header	up	here.Now	if	you're	using	the	styles	that	you	copied	over	to	your	product	folder,	but	in	the	next	video,	we're	going	to	create	the	styles	and	that	will	make	the	header	show	up	with	the	logos	we	have	created	or	had	a	component,
but	we	can't	really	see	anything.So	we	have	to	create	the	styles	for	it.Also,	you	can	see	it.Yeah,	it	looks	like	crap	here.So	we	have	to	give	this	some	styling	also.So	we	see	it	have	nice	little	logos	and	or	header.So	inside	our	file,	that's	called	header.styles.js.We're	going	to	start	by	creating	the	reference	style	component,	we're	going	to	set	the
background	on	that	one	background.And	from	our	variables,	we're	going	to	grab	the	one	that	called	dark	gray,	like	this.And	then	I'm	going	to	give	it	some	padding	zero	and	20	pixels.And	that	will	give	it	some	padding	on	the	sides.We'll	save	it,	go	back	to	our	browser.And	now	you	can	see	that	we	see	all	gigantic	logos	here	on	our	gigantic	header.So
we	have	to	do	something	about	this	one	also.So	we	have	our	content	div.This	one	is	going	to	be	displayed	as	a	flex,	because	I	want	to	place	the	logos	on	the	left	and	the	right.And	we	can	do	that	with	flex.So	first	we	align	items	to	center.And	this	will	align	them	vertically.And	then	we	justify	the	content.And	we	set	it	to	space	between	and	this	will	create
space	between	them	and	push	them	to	the	side	one	is	going	to	be	pushed	to	the	right	and	one	is	going	to	be	pushed	to	the	left.And	I'm	also	going	to	set	the	max	width	of	this	one.And	that's	why	I	also	have	a	container	that	called	content	because	the	rapper	is	going	to	have	this	background	of	dark	gray.But	I	don't	want	the	content	itself	to	have	the	full
width,	the	max	width	is	going	to	be	from	our	variable	dash	dash	max	with	like	this.And	I'm	going	to	set	some	padding	at	the	top	and	bottom	are	20	pixels	and	zero	on	the	sides.And	I	set	the	margin	to	zero,	all	and	this	will	center	the	content	div	itself,	save	it	go	back	and	see	what	we've	got	so	far,	you	can	see	that	they	are	pushed	to	the	size.And	that's
great.Flexbox	is	really	neat	to	do	stuff	like	this,	but	the	size	isn't	correct	on	the	logo.So	we	have	to	modify	this.So	we	have	our	logo	IMG.That's	the	main	logo,	and	that's	the	style	image,	we	set	the	width	to	200	pixels	on	this	one,	save	it,	go	back	to	the	application,	you	can	see	that	we	have	the	correct	size	here.But	we	also	want	to	change	this	size	on
the	logo	when	we	are	on	smaller	devices.So	we	create	a	media	query	at	media	screen	and	Max	dash	with	I	don't	really	know	if	you	need	to	actually	use	screen	today.I	think	it's	not	necessary,	but	I'm	used	to	that.So	I	will	do	that.I	set	the	max	width	to	400	pixels.This	means	that	when	the	screen	size	is	lesser	than	500	pixels,	this	one	will	kick	in.So	we
set	the	width	150	pixels	on	that	one,	save	it	go	back	to	our	application	and	see	what	we	got.So	I	can	make	this	smaller.And	you	can	see	that	there.The	logo	gets	smaller	also.So	we	know	that	the	media	query	is	working.And	this	is	also	something	that's	super	great	with	styled	components,	because	you	can	nest	the	media	queries	as	I	did	inside	of	this
component.I	think	this	is	very	readable	to	do	it	like	this	because	you	know	that	this	specific	media	query	belongs	to	this	component.All	right,	so	that's	the	main	logo.Then	we	just	have	the	style,	the	TMDB	logo	also.I'm	going	to	set	the	width	200	pixels	on	this	one.And	then	I	set	a	media	query	on	this	one	also	at	media	screen	and	Max	with	500	pixels.So
it	may	see	seem	redundant	to	have	two	of	them	here.But	actually,	as	I	told	you,	I	think	this	is	very	readable.If	you	want	to	change	a	media	query	for	just	that	component,	you	can	do	that	inside	of	the	nested	media	query	here.And	I	like	that	a	lot.So	for	this	one,	I'm	going	to	set	the	width	to	80	pixels,	and	save	it,	go	back	to	the	application.And	there	you
have	it,	this	is	our	header.And	you	can	see	that	it's	working	on	both	of	the	logos	when	we	make	the	viewport	smaller.Sweet,	that's	the	stars	for	the	header.In	the	next	video,	we're	going	to	scaffold	out	our	homepage.Alright,	we're	going	to	start	building	the	homepage	for	our	nice	little	application.And	we're	going	to	have	all	this	stuff	here,	on	our
homepage,	the	homepage	is	going	to	be	what's	called	a	container	component.And	then	we're	going	to	create	different	components.For	example,	for	the	hero	image	for	the	search	bar	for	the	thumbnails	for	the	grid,	and	for	the	Load	More	button.Let's	go	back	to	our	code	editor.And	inside	a	components	folder,	we	create	a	new	file	that	we	call	home.dot
j	s	capital	H.And	this	one,	I	don't	have	a	folder	for	this	one,	because	this	is	kind	of	more	container	component.So	we	don't	have	any	styling	in	this	one,	we're	going	to	apply	the	styling	on	the	individual	components	instead.Alright,	so	the	first	thing	we	always	do	when	we	create	a	component	in	react	is	to	import	react,	import	react	from	react,	then	I'm
going	to	create	a	little	comment	here	and	call	it	config	because	we're	going	to	import	some	stuff	from	the	file,	let's	call	config.js.And	inside	of	this	file,	I've	set	everything	up	for	you	that's	needed	for	the	Movie	Database	API,	and	I	export	them	here	in	an	object.So	we're	going	to	import	a	few	things	from	this	file	in	the	home	component.So	go	back	to	the
home	dot	j	s,	and	we	import	curly	brackets,	we're	going	to	import	the	poster	underscore	size,	all	capital	letters,	we're	going	to	import	the	backdrop,	underscore	size.And	the	image	underscore	base	underscore	URL.Remove	this	sidebar	here.We're	going	to	import	them	from	dotnet,	forward	slash	config,	like	this,	and	be	very	careful	here	with	the
spelling	all	capital	letters	and	underscore.Alright,	then	later,	we're	going	to	import	a	lot	of	components	here.So	for	now,	I	just	mark	it	like	this,	we're	also	going	to	import	to	hook.So	I	marked	that	one	also.And	we're	also	going	to	import	an	image.So	if	we	go	back	and	look	here	in	the	images	folder,	I	have	this	image	that's	called	no	underscore
image.And	this	one	is	a	fallback	image	if	we	don't	get	an	image	back	from	the	Movie	Database	API.So	we	have	this	funny	little	smiley	balloon	here	that	will	fall	back	to	if	we	don't	have	an	image	to	go	back	to	the	home.js.And	we	import	are	going	to	call	it	no	image.And	when	you	do	an	import	like	this,	you	can	call	it	whatever	you	want.So	doesn't	need
to	be	named	like	this.I'm	going	to	import	from	doc	dot	forward	slash	images.And	I	grabbed	the	no	underscore	image	dot	jpg,	very	important	to	have	the	file	extension	when	importing	images	like	this.Alright,	then	I'm	going	to	create	the	component	itself.And	as	I	told	you,	I	like	to	create	it	with	an	arrow	function,	you	can	have	a	regular	function,	if	you
want	to	do	that.I	have	a	const	home,	I	have	a	capital	H.All	react	components	always	have	a	capital	first	letter.Very	important	always	name	your	components	with	a	capital	first	letter.So	home	capital	H.And	then	we	don't	have	any	props	for	this	one.So	I	just	leave	it	empty	here	the	parenthesis	and	then	I	have	an	arrow	function.And	I	have	curly	brackets
because	this	one	is	going	to	have	some	logic	inside	of	it,	we	have	to	have	a	return	statement	and	make	an	explicit	return.So	return	for	now	we	can	just	return	a	div	that	says	homepage	like	this.Alright,	then	we	can	also	actually	scaffold	out	our	states	that	we're	going	to	have	in	this	component.And	for	that	one,	we're	going	to	need	a	hook	that's	called
use	state.So	make	sure	to	import	that	one	up	here.You	type	in	a	coma	and	then	you	have	curly	brackets.And	we	import	use	state	from	the	React	library.And	the	use	state	hook	is	the	hook	that	you	use	in	functional	components	in	react	to	create	a	state.So	when	we	call	the	use	state	hook,	we'll	get	an	array	back.The	first	value	is	going	to	be	the	state
value	itself	and	the	second	value	is	going	to	be	the	setter	for	the	state.And	the	standard	for	grabbing	and	using	these	values	is	to	use	the	Six	syntax	for	destructuring.So	I	create	a	const,	or	the	structure	of	the	state	and	the	setter	for	the	state	set	state.And	you	can	call	it	whatever	you	want	here,	but	I	want	to	call	this	state,	you	could	call	it	cool	like
this,	but	I	don't	actually	think	it's	that	cool.So	I'm	gonna	stick	with	state	like	this.And	then	we	have	an	equal	sign,	and	we	call	the	use	state	hook.For	now,	we'll	leave	it	empty,	but	it	could	provide	it	with	an	initial	state	in	here.But	we	don't	do	that	for	now.So	as	you	can	see,	here,	I'm	calling	use	state	and	this	one	will	give	us	an	array	back.So	from	that
array,	I	destructor	out	the	state	and	the	setter	for	the	state.Otherwise,	we	could	do	it	like	this.But	you	shouldn't	do	that.We	have	a	const	stayed,	you	stayed	like	this,	and	this	state	will	be	an	array	with	the	first	value	date	value	here.And	then	we	have	the	setter,	or	the	state	as	the	second	value.And	then	as	we	didn't	destructor,	this	one	out	here,	we	just
put	it	in	this	constant	called	state.If	we	want	to	grab	the	state,	we	have	to	type	it	in	like	this,	to	use	the	index	zero	because	that's	the	first	value	in	the	array.And	if	we	want	to	set	the	state,	we	have	to	grab	the	setter	like	this	with	the	second	value	in	the	array,	that	is	the	index	one.So	that's	no	good.Actually,	it's	much	better	to	do	it	like	this,	instead,	we
destructed	out	and	we	can	also	name	them	individually	by	doing	it	like	this.Alright,	so	this	is	the	way	to	go,	this	is	the	way	you	should	do	it.So	that's	the	state	we'll	that	will	hold	all	the	movies,	then	we're	going	to	have	the	state	for	the	loading,	the	loading	and	set	loading	equals	use	state	and	this	one,	I'm	going	to	give	an	initial	state,	I'm	going	to	set	it
to	false.And	this	is	also	great	with	the	use	state	hook,	you	can	have	as	many	of	these	ones	as	you	want,	you	can	split	the	state	up	into	multiple	ones.And	you	couldn't	do	that	in	the	class	components	in	react,	because	before	we	had	the	use	state	hook,	we	needed	to	create	a	class	to	have	state	in	react.And	then	we	just	had	one	state	and	you	have	to	have
a	state	object	with	all	the	stuff	in	it.But	now	we	can	separate	them	out	into	different	states.And	that's	super	great.So	I'm	going	to	create	the	third	one	that	are	called	error	and	set	error.And	this	one	is	going	to	be	used	if	we	receive	an	error	from	the	API.So	we	can	have	this	as	a	flag,	and	we	set	this	one	to	false	also.Right.So	that's	the	states,	we	have
to	do	one	more	thing,	because	we	have	created	this	component.And	we	also	have	to	export	it.So	export	default,	home	like	this.See	if	we	can	get	some	more	formatting.Now	it	looks	great.Anyways,	alright,	save	the	file.But	if	we	go	back	to	our	application,	you	can	see	that	we	don't	see	anything	yet	it	just	start	here.That's	because	we	have	created	a
component,	but	we're	not	actually	using	it.So	in	the	app.js	file,	up	here,	where	we	import	the	header,	we're	going	to	import	home	from	dot	forward	slash	components,	and	home	like	that.And	then	we	can	use	that	component	down	here.So	we	remove	start	here	and	use	a	component	and	we	self	close	it,	because	we're	not	sending	in	any	props.So	we	just
type	out	the	name	in	a	tag	like	this,	save	the	file,	go	back	to	the	application.And	you	can	see	that	it	says	homepage.And	that's	great.We	know	that	it's	working.And	you	may	wonder	why	we	have	all	these	warnings	here.But	they	are	just	warnings	because	we're	not	using	these	values.Now,	they	will	disappear	later	when	we	use	them	in	the
component.So	nothing	to	worry	about	there.In	the	next	video,	I'm	just	going	to	do	a	short	talk	on	the	standard	hooks,	that's	indirect	library,	and	then	we	move	on	and	actually	fetch	some	data	from	the	Movie	Database	API.Okay,	before	we	move	on,	I	just	want	to	make	a	brief	talk	about	the	built	in	hooks	that's	in	the	React	library,	we	can	also	create
our	custom	hooks.And	we're	going	to	do	that	in	this	course	also,	but	we	have	some	hooks	that's	built	in	that	you	probably	going	to	use	most	of	the	time	when	you	create	react	applications.So	I'm	on	the	React	js.org.And	I'm	in	this	chapter	here	that's	called	hooks.This	is	great	if	you	want	to	know	more	about	hooks,	because	honestly	hooks	can	be	a	little
bit	hard	to	grasp	in	the	beginning.So	I	highly	recommend	that	you	actually	read	this	chapter	here	if	you're	completely	new	to	hooks.And	if	you're	new	to	react,	this	is	a	great	way	to	start	doing	some	reading	before	you	do	any	course	or	create	anything	with	react.It's	always	a	good	idea	to	have	some	basic	theoretical	knowledge	before	you	start	with
something.But	of	course,	it	depends	on	how	you	like	to	learn	stuff,	so	I	shouldn't	tell	you	how	to	do	it.Alright,	so	they	have	an	introduction	to	hooks,	they	have	different	chapters	here,	we	actually	going	to	look	at	this	one	number	seven	hooks	API	reference,	and	I'm	going	to	talk	about	the	hooks	that's	built	in	the	library,	sort	of	separated	in	basic	hooks
and	additional	hooks.And	the	basic	hooks	are	probably	the	ones	that	you're	going	to	use	not	maybe	99%	but	perhaps	95%	of	the	time,	and	then	you're	going	to	create	some	own	custom	hooks	and	use	some	special	hooks	sometimes.So	we	already	talked	a	little	about	the	use	state	hook.That's	the	one	that	you	use	for	creating	state	in	a	functional
component	in	react.So	that	one	we	imported	in	the	last	video,	and	we	initialized	it	and	set	it	up	in	the	home	component,	we're	also	going	to	use	the	hook	that's	called	use	effect.And	use	effect	is	a	hook	that	you	can	use	for	side	effects.So	in	our	case,	we're	going	to	grab	data	from	an	API,	and	that's	a	side	effect.So	we're	going	to	use	the	use	effect	hook
for	grabbing	that	data.And	we're	going	to	use	the	state	to	keep	that	data	in	our	application,	then	you	have	a	hook	that's	called	use	context,	we're	not	going	to	use	that	hook	in	the	main	part	of	this	course.But	I	am	going	to	use	the	use	context	hook	in	the	extra	chapter	at	the	end,	where	I	create	a	Movie	Database,	login	in	the	application	and	make	it
possible	for	you	to	cast	a	vote	on	the	movies,	then	I'm	going	to	set	up	a	global	state	that	holds	the	login	information	of	the	user	by	using	the	use	context.So	that's	the	basic	hooks.And	then	you	have	some	additional	hooks	use	reducer,	that's	something	that's	very	similar	to	if	you,	for	example,	have	used	Redux.The	use	reducer	is	very	similar	to	that
one.And	it	can	be	used	instead	of	the	use	state	hook	if	you	want	more.I	don't	know	if	it's	a	more	complex	state.But	yeah,	yeah,	maybe	a	more	complex	state	than	the	use	state,	we	want	to	use	it	in	this	course.And	the	use	callback	and	use	memo	hooks	are	hooks	that	you	can	use	to	memorize	stuff.If	you	don't	want	to	recreate	for	example,	a	function	on
each	render,	they	are	very	handy	if	you	for	example,	run	into	something	that's	called	an	infinity	loop	with	the	use	effect.That's	very	common	actually,	in	react	that	you	can	do	that.Because	if	you	set	the	state	in	a	use	effect	that	will	trigger	a	rerender.And	if	you	have	a	dependency	in	the	use	effect,	for	example,	a	function	that	recreates	on	each	render,
that	will	trigger	that	effect	again,	and	that	will	set	the	state	again,	and	it	will	trigger	the	effect	again.And	yeah,	you	get	the	point	here,	it	will	create	an	infinity	loop,	then	you	can	use	the	use	callback	to	wrap	that	function	inside	the	use	callback	hook.And	that	won't	recreate	the	function	on	each	render.Because	by	default,	if	you	create	just	a	regular
function,	React	will	recreate	that	function	on	each	render.And	use	effect.If	you	specify	that	one	in	one	in	something	that's	called	a	dependency	array	that	we're	going	to	talk	about,	then	that	use	effect	will	trigger	again,	because	it	will	think	it's	a	new	function	because	that	function	has	been	recreated	on	the	next	render.So	use	callback	and	use	memo
or	hooks	you	can	use	to	memorize	stuff	in	react,	but	I	think	there	are	a	little	bit	more	advanced,	so	I	won't	use	them	in	this	course,	they	use	ref	hooked,	we	actually	going	to	use	that	one	because	I'm	going	to	show	you	a	little	trick	in	this	application.And	a	neat	little	use	case	to	use	this	one	use	ref	is	basically	a	hook	you	can	use	to	create	a	mutable
value	that	won't	trigger	a	rerender,	you	can	see	just	maybe	like	you're	kind	of	a	regular	variable	that	won't	trigger	a	rerender.So	we	can	use	this	one	to	create	a	mutable	value.Because	if	we	have	it	in	a	state,	it	will	always	trigger	a	rerender	when	we	change	that	value.But	if	we	change	the	value	with	the	use	ref	hook,	it	won't	trigger	a	rerender.Use
imperative	handle,	I've	never	used	this	one.So	I'd	actually	don't	know	what	is	for	use	layout	effect,	it's	very	similar	to	use	effect.They	only	differ	in	when	they	trigger.So	there's	no	use	case	for	the	use	layout	effect	in	this	course.So	I	won't	go	into	detail.And	use	debug	value.I	haven't	used	this	one	either.These	are	the	built	in	hooks	in	react.But	I	think
the	strength	about	hook	is	that	you	actually	can	create	custom	hooks.And	we're	going	to	do	that	in	this	course	also,	that	was	a	brief	introduction	to	hooks	in	react.So	in	the	next	video,	we're	going	to	fetch	some	data	from	the	Movie	Database	API,	we're	going	to	use	the	use	effect	hook	and	the	use	state	hook	for	that.Alright,	let	the	fun	begin,	because
now	we're	actually	going	to	fetch	some	data	from	the	Movie	Database	API.And	that's	super	exciting,	because	it's	always	great	when	you	see	the	magic	happens	when	you	have	that	nice	little	JSON	object	with	all	the	data	that	we	fetch	from	an	external	source.I	like	that	I	love	it.Alright,	so	we're	going	to	be	in	the	home.js	file	for	this	one.Now,	the	later
we're	going	to	kind	of	break	this	one	out	and	place	it	in	its	own	custom	hooked.But	for	now,	we're	going	to	be	in	the	home	component	and	created	inside	of	here.So	we're	already	importing	US	state.But	we're	also	going	to	import	use	effect,	because	we're	going	to	use	this	one	for	fetching	the	data.Then	I	have	this	file	here,	that's	called	api.js.And
inside	of	this	file,	I	created	all	the	functions	for	fetching	data	from	the	API.And	I	will	also	say	that	this	will	probably	one	of	the	most	advanced	videos	in	this	course	and	also	one	of	the	longest	so	you	can	care	a	little	extra	about	this	video	because	it's	kind	of	advanced	stuff	in	this	one.Alright,	in	this	file.api.js,	I	have	this	omit	here	where	I	export	a	couple
of	functions.The	three	first	ones	are	the	ones	that	we	actually	need	to	care	about	the	other	ones	is	for	the	bonus	material	for	this	course.So	you	don't	have	to	care	about	that	now.So	this	one	is	the	one	that	we're	going	to	use	now	fetch	movies,	and	this	will	fetch	a	lot	of	movies,	multiple	movies,	then	I	have	this	fetch	movie	without	the	s	and	this	one	will
fetch	an	individual	movie.And	then	I	have	fetch	credits.And	that's	the	credits	for	the	movie	itself.So	these	ones	are	going	to	be	used	for	the	individual	movie	page.And	if	we	take	a	quick	look	at	this	fetch	movies,	here,	you	can	see	that	this	one	has	two	parameters	of	search	term	and	page.So	we're	going	to	give	it	the	search	term	and	the	page	that	we
want	to	fetch.And	I	have	a	ternary	operator	here.And	that's	ies	six	syntax	for	kind	of	a	shortcut	for	if	an	else	so	I	do	a	check	here,	I	check	if	I	have	a	search	term,	and	then	I	have	a	question	mark.And	if	this	one	is	true,	if	I	have	a	search	term,	it	will	run	this	one	to	the	right	to	the	question	mark.And	if	this	one	is	false,	I	have	a	colon	here,	it	will	run	this
one	to	the	right	of	the	colon.It's	a	shorthand	for	if	and	else,	then	I	have	to	do	this	because	we	have	different	resources	from	them	point	depending	on	if	we're	doing	a	search,	or	if	we're	grabbing	the	most	popular	movies.So	that's	why	I	have	this	ternary	operator	here.If	we	in	the	search,	we're	going	to	use	this	resource	from	the	endpoint	here	and	also
attach	the	search	term.And	then	we	also	grab	the	correct	page.So	we	add	this	as	a	parameter	to	the	URL.And	then	I	return	on	the	wait.And	I	actually	waited	two	times.And	that's	because	I	first	await	the	fetch	from	endpoint.And	then	I	await	when	I	actually	converted	with	JSON,	because	this	one	is	also	async.So	that's	why	I	have	to	await.And	as	I	have
an	await,	I	have	marked	this	one	with	an	async.So	I'm	using	the	async	await	syntax	for	this	one,	you	could	also	use	the	good	old	them.But	I	think	that's	not	as	readable.I	actually	like	this	a	lot	more.So	that's	why	I'm	using	the	async	await	syntax	for	this	one.Alright,	and	I	think	that's	it	for	this	file.We	don't	have	to	care	about	this,	because	we're	going	to
import	this	function.So	go	back	to	home.js.And	just	below	here,	I'm	also	going	to	remove	the	sidebar	on	market	with	API.And	then	I	import	API	from	dot	dot	forward	slash	API.And	this	will	give	us	this	object	where	we	can	access	those	functions	are	talked	about.Alright,	so	that's	the	API,	then	down	in	the	actual	component	here,	just	above	the	return
statement,	we	can	create	a	new	function	that	we're	going	to	call	fetch	movies.And	as	we	fetching	from	the	API,	and	we're	going	to	use	a	wait,	we	have	to	mark	this	with	async.And	then	it's	going	to	have	two	parameters	is	going	to	have	the	page	and	the	search	term.And	we	can	set	the	default	value	on	the	search	term	to	an	empty	string	like	this.And	I
have	an	arrow,	and	I	call	the	brackets.So	we	create	this	function	here	is	an	async	function,	because	we're	going	to	fetch	from	the	API	and	await	the	data.This	one	is	going	to	get	the	page	we	can	send	in	what	page	we	want	to	grab.And	then	we	can	also	send	in	the	search	term,	we	haven't	actually	created	this	one	yet,	because	this	one	is	going	to	be
another	state	when	we	create	the	search	bar.So	we're	going	to	add	in	more	states	here	later,	and	also	have	a	state	for	the	search	term.And	if	we	don't	send	in	a	search	term,	we're	going	to	fall	back	to	an	empty	string.So	we	set	this	one	as	default.So	that's	the	fetch	movies	function.We're	going	to	read	this	in	a	try	and	catch	block,	try	and	catch.And	we
can	get	the	error	in	this	case,	I'm	not	actually	going	to	set	the	error,	I'm	just	going	to	have	a	flag	that	setting	if	it's	true	or	false.But	of	course,	you	can	have	a	state	where	you	can	store	the	message	from	error	Also,	if	you	want	to	do	that.So	in	the	catch,	we're	just	going	to	have	set	error,	and	we	set	it	to	true.And	here	to	see	how	I	use	this	setter	for	the
state.So	we	destructor	it	out	here.And	to	set	a	new	state	for	that	one,	we	call	this	one	and	we	give	it	the	value.So	I	call	set	error,	and	I	give	it	the	value	true	and	this	will	change	that	state	to	true	inside	of	try	block	will	first	going	to	set	the	error	to	false.Because	now	we	grab	a	new	data.So	we	have	to	make	sure	that	this	one	isn't	set	to	true	because	we
don't	have	an	error	before	we	have	fetched	anything.And	we're	going	to	set	the	loading	to	true	because	now	we're	fetching	so	we	set	this	flag	to	true.And	this	is	how	we	can	keep	track	on	when	we	actually	fetching	and	we	can	show	the	loading	spinner	and	stuff	like	that.All	right.Then	I	create	a	course	that	I	call	movies.And	this	course	is	going	to	hold
all	the	movies.So	I'm	going	to	wait.And	from	the	API	that	we	imported	up	here.We	have	that	function	that	I	showed	you.That's	called	fetch	movies	with	an	s	really	important,	and	then	we're	going	to	give	it	the	search	term	and	the	page	So	this	will	hopefully	grab	the	movies	for	us.And	we	can	try	yourself	with	console	log	movies.But	if	we	go	back	to	our
application,	you	can	see	that	we	don't	actually	get	anything	here	because	we	haven't	triggered	this	function.And	we	have	to	do	that	in	a	use	effect.So	we	have	the	function	now,	but	we	haven't	triggered	it,	do	some	more	formatting,	and	go	below	the	function	here.And	we	call	the	use	effect.And	the	use	effect	is	called	with	an	inline	function	like	this.And
then	we	can	do	what	we	want	inside	of	this	use	effect.So	what	we	want	now	is	to	trigger	this	only	on	Mount	only	when	we	mount	this	home	component	on	the	initial	run	of	this	one.So	we	can	do	this	by	specifying	a	comma	here,	and	an	empty	array.This	is	what's	called	a	dependency	array.For	the	use	effect,	we	can	specify	different	dependencies	on

when	we	want	this	use	effect	to	trigger.In	our	case,	we	just	wanted	for	now,	the	trigger	when	we	start	up	the	application,	and	when	the	home	component	mounts,	so	I	specify	this	as	an	empty	array	for	now.And	when	we	specify	it	as	an	empty	array,	it	will	just	run	once.So	that's	really	neat.In	this	case,	we	can	just	call	fetch	movies,	we're	going	to	send
in	one,	because	we	want	to	fetch	the	first	page,	we	can	also	mark	this	one	actually	with	initial	render.So	we	are	specified	an	empty	dependency	array,	meaning	that	it	will	only	run	once	on	the	initial	render.And	inside	the	use	effect,	we	call	our	fetch	movies	function.And	hopefully,	we	will	get	the	console	log	of	all	the	movies	if	we	save	this	one	and	go
back	to	our	browser.And	yes,	you	can	see	here	we	have	the	movie	object	here.So	in	this	object,	we	have	the	page	one.And	this	is	all	from	the	Movie	Database	API.So	it's	nothing	that	we	have	set	up	here,	we	have	a	total	pages	of	500,	total	results	of	10,000.And	we	have	the	actual	movies	in	a	property	that's	called	result.And	this	is	an	array,	and	we	get
20	movies	at	a	time	from	the	API.So	that's	sweet,	we	know	that	we	grabbing	data,	and	we	know	that	it	does	triggers	once.And	that's	super	great.So	now	when	we	have	the	data	here,	we	can	actually	set	our	state	because	we	have	our	state	up	here	and	we	want	to	put	our	movies	in	the	state.So	I'm	going	to	call	set	state.And	for	this	one,	I'm	going	to
provide	it	with	an	inline	function	is	a	callback	function,	that's	going	to	be	called	with	the	previous	state	by	the	state	setter,	if	you	provide	a	state	setter	with	a	function,	it's	going	to	be	called	with	the	previous	state.And	that's	great,	because	we	need	a	previous	state	when	we	set	the	state.And	I'm	going	to	show	you	why	in	a	second.So	we	have	a
parameter	that	are	called	prayer,	you	can	call	it	whatever	you	want.In	the	state,	we	want	to	set	an	object,	so	we	want	to	return	an	object,	so	I	have	a	parenthesis	and	curly	brackets.If	we	didn't	have	the	parenthesis,	it	would	think	that	these	curly	brackets	marks	the	scope	of	the	function	itself.And	that's	no	good.We	want	to	return	an	object	and	an
object	also	is	marked	with	the	curly	brackets.So	we	have	this	parenthesis	before	and	this	parenthesis	after,	this	will	make	sure	that	we	return	an	object.And	this	parenthesis	here	is	for	the	setter,	of	course,	so	we	have	two	parentheses	here	at	the	end.So	I	have	this	little	neat	little	plugin.Also	in	Visual	Studio	code	where	you	can	see	I	get	these	different
colors	of	the	parentheses.So	it's	really	easy	to	see	the	parenthesis,	I	think	it's	called	rainbow	brackets	that	plugin.So	we're	going	to	set	the	state	we	have	the	movies	inside	of	this	cost.So	I'm	going	to	use	the	e6	syntax	that's	called	spread,	I	use	three	dots	and	spread	the	movies.And	this	is	because	I'm	going	to	take	this	object	here	and	spread	it	out
here.That	means	that	we	creating	a	new	object,	it's	going	to	take	all	the	properties	from	this	movies	and	spread	them	out	inside	of	this	object	here.When	you	set	the	state	in	react,	you	should	always	provide	it	with	a	new	value,	you	should	never	mutate	the	state	in	react	because	if	you	mutate	the	state	directly,	it	won't	trigger	a	rerender.And	there	can
be	a	lot	of	trouble.You	should	always	use	a	satellite	this	to	modify	the	state.And	you	should	always	provide	it	with	a	new	value	and	not	mutate	the	state.Really,	really	important.Never	mutate	the	state	in	react.Okay,	so	we	have	the	movies.And	then	if	you	remember,	we	have	this	property	here	that's	called	results.So	this	is	holding	all	the	movies.But	in
our	case,	we	need	to	decide	on	how	this	new	state	should	look	because	if	we	load	more	movies,	we	want	to	append	the	new	movies	to	the	old	state	to	the	old	movies	and	not	wipe	them	out.So	we	have	to	do	some	check	here	for	that	on	the	results.So	we	have	the	results	property,	colon,	and	then	I'm	going	to	put	it	on	a	new	row.I'm	going	to	check	if	the
page	is	greater	than	one.Then	I	have	a	question	mark.This	is	a	ternary	operator	here	again,	are	going	to	return	a	new	array	are	spread	out	from	the	previous	state	prep.That's	the	one	here	as	I	told	you,	this	one	is	getting	called	with	the	previous	state	So	from	the	previous	state,	I	spread	out	the	old	result,	three	dot	prevot	dot	results	with	an	S	at	the
end.All	right,	so	that's	the	old	movies	that	we	already	have	in	the	state,	then	I	have	a	coma.And	I'm	going	to	attach	the	new	movies	from	the	new	movies,	dot	dot	dot	movies,	dot	results.And	this	one	is	going	to	append	the	new	movies	to	this	array.So	we	get	an	array	with	the	old	movies	and	the	new	movies.And	that's	great.Then	we	have	a	colon
because	if	we're	not	loading	more,	we	can	wipe	out	the	old	movies	and	just	give	it	the	new	movies	that	we	got	in	this	concept	called	movies.So	dot	dot,	dot,	movies,	dot	results,	like	this	is	some	auto	formatting.And	this	will	hopefully	work.We	don't	know	if	it	works,	because	we	haven't	created	a	load	more	button	yet.So	we'll	see	that	later	in	the
course.And	there's	one	more	thing	we	have	to	do,	because	we	setting	the	loading	to	true	here.And	we	have	to	set	it	to	false	when	we	have	grabbed	all	the	movies.So	just	below	the	try	and	catch	block	here	at	the	end	of	this	function,	we're	going	to	set	loading	to	false	like	this,	save	the	file,	go	back	to	see	that	it	works.reload	it,	and	yes,	it	works.And
that's	super	great.But	we	call	slogging	it	out	here,	we	don't	know	if	it	works	with	the	state.So	we	remove	this	console	log,	and	go	down	here	somewhere	just	above	the	return	statement,	and	we	can	console	log	out	the	state	instead,	save	the	file.And	we	hope	for	the	best.Go	back	to	the	browser.And	yes,	you	can	see	we	have	the	state	here.And	you	may
wonder	why	is	it	showing	this	many	times.And	that's	because	if	we	look	in	the	home	component,	we	have	three	different	states	here.So	it	will	rerender	each	time	we	change	one	of	these	states.And	some	may	say	and	go	crazy,	oh,	we	have	a	lot	who	renders	that	crazy,	it	will	make	this	application	so	slow.But	yeah,	you	shouldn't	worry	about	that,
actually,	because	react	will	diff	those	things	and	only	update	things	in	the	DOM	that	has	changed.So	it	doesn't	matter	if	it	rerender	this	many	times.And	to	be	honest,	React	is	fast.So	even	if	you	had	a	lot	of	rear	Enders,	you	won't	have	any	performance	issue	in	an	application	of	this	scale,	don't	worry,	it's	completely	okay	that	it	renders	all	these	times
because	it	won't	rerender	the	complete	page,	it	will	only	run	the	stuff	that	has	changed.All	right,	that's	how	you	fetch	data	from	the	Movie	Database	API	with	a	use	effect	hook	and	then	you	put	it	in	the	state	with	the	use	state	hook.In	the	next	video,	we're	going	to	take	all	this	logic	here	and	create	our	own	custom	hook	and	place	that	data	inside	of
there.And	then	we	can	get	rid	of	this	one	in	the	home	component.So	it	will	look	a	lot	cleaner.Okay,	we're	grabbing	data	from	the	Movie	Database	API	with	the	use	effect	hook	and	we	place	it	in	the	state	with	the	use	state	hook,	we're	going	to	move	all	this	logic	inside	of	a	custom	hook	instead,	because	that	will	make	this	component	A	lot	cleaner.And
it's	always	great	to	separate	out	this	logic,	if	we	want	to	reuse	it	somewhere	else	in	the	application.In	our	case,	we	don't	need	to	do	that.So	we	do	it	just	because	we	want	to	clean	up	this	component	and	to	separate	out	this	logic.So	that's	why	you	create	custom	hooks.Either	you	do	it	because	you	want	to	reuse	some	logic	somewhere	in	your
application,	or	you	want	to	clean	it	out	and	have	that	separated	out.So	inside	of	the	src	folder,	not	in	the	components	folder,	this	time	inside	of	the	src	folder,	create	a	new	folder,	that's	called	hooks.And	inside	of	that	folder,	create	a	new	file	that's	called	use	home	fetch	camel	casing,	dot	j	s,	capital	H,	capital	F.And	why	do	I	name	it	like	this?	Yeah,	it
would	probably,	but	this	page	here	is	based	on	all	the	popular	movies.So	it	changes	a	lot.So	that	means	if	we	store	it	in	the	local	storage	and	never	remove	it,	we	always	get	the	same	list	of	movies	here.And	that's	no	good.So	that's	why	it's	better	to	store	it	in	the	session	storage.And	also,	each	individual	movie	here.Also	sharing	just	because	we	have	a
rating,	that	one	has	zero	rating.Okay.Let's	select	another	one,	that	one	has	7.6.So	the	rating	will	change	depending	on	the	voting.So	there	is	stuff	that	can	change	in	each	movie	also.So	that's	why	I	chose	the	session	storage	for	both	of	them.But	if	you	want,	you	can	use	the	local	storage	instead,	the	code	is	going	to	be	the	same	except	that	you	swap
out	session	storage	for	local	storage	when	we	write	the	code.In	the	next	video,	we're	going	to	learn	how	to	persist	the	state	in	the	session	storage	for	the	homepage.Okay,	we're	going	to	learn	how	to	persist	the	state	in	the	session	storage.And	we're	going	to	start	by	creating	a	little	function	that	we	can	use	to	read	from	the	session	storage.So	go	back
inside	of	the	code	editor,	and	in	the	file,	let's	call	helpers	dot	j	s	that's	the	one	are	provided	for	you	in	the	store	defies	we're	going	to	add	in	a	little	function	at	the	bottom	here	in	this	file.So	we	export	the	const	is	persisted,	stayed	like	this	equals,	then	we	have	a	parameter	that's	called	state	name	or	name,	you	can	name	it	whatever	you	want,	then	I
have	an	arrow	function.And	then	we	create	a	cost	that	we	call	session	state	equals	and	from	the	session	storage,	session	storage.We	have	a	method	that's	called	get	item.And	this	is	what	I	talked	about	before	if	you	want	to	use	the	local	storage	instead,	you	can	just	change	this	one	to	local	storage	and	it	will	work	you	just	swap	this	one	out	to	local
storage.Alright,	so	we	invoke	The	method	is	called	get	item,	we	give	it	the	state	name.And	this	will	return	the	state	from	the	session	storage	if	there's	a	state,	otherwise	it	will	return	No.So	it	will	get	the	item	from	the	session	storage	with	the	name	that	we	provide,	there	would	need	to	return	something	from	this	function	that	we	created.So	return,	and
I'm	going	to	do	a	short	circuit	here,	I	checked,	if	session	state.If	we	have	something	in	this	one	here,	now	I	have	double	ampersand	and	it	will	return	what's	the	right	of	the	ampersands.Otherwise,	it	will	return	this	one.And	this	will	be	now	if	it	couldn't	find	this	one	in	the	session	storage.Let's	say	that	we	have	something	in	the	session	state,	it	will	run
what's	to	the	right	of	the	double	ampersand	so	we	can	return	that	state.But	we	can	just	return	it	as	it	is	because	you	can	only	write	to	the	session	storage	and	to	the	local	storage	as	a	string.So	we	have	to	parse	it	back	from	a	string	into	JSON.So	that's	also	what	we're	going	to	do	when	we	write	to	the	session	storage,	we're	going	to	first	convert	it	to
string	but	now	we	have	to	parse	it	back	and	forth,	we	can	do	that	with	JSON	capital	letters,	parse,	and	then	we	give	it	the	session	stayed	like	this.And	this	will	parse	it	back	to	JSON	object	and	we	return	it	save	the	file.And	this	is	it	for	this	little	function.So	let's	move	inside	of	the	use	home	fetch	hook	down	below	here.Our	search	an	initial	use	effect
hook.In	this	one,	we	can	check	if	we	have	a	session	state	before	we	retrieve	anything	from	the	API.So	there	are	a	couple	of	things	we	have	to	consider	here.Because	we	want	to	check	the	session	storage	on	the	initial	render,	before	we	fetch	anything	from	the	API.If	we	have	something	in	the	session	storage,	we	retrieve	that	one	instead.And	later,
we're	going	to	create	a	hook	that	also	writes	to	the	session	storage.And	we're	not	going	to	write	to	the	session	storage	if	we're	in	a	search.And	that	means	that	we	also	don't	want	to	retrieve	anything	if	we	are	in	a	search.So	that's	why	we're	going	to	create	an	if	statement	here.Just	at	the	top	in	this	use	effect	if	and	we'll	have	an	exclamation	mark,	and
search	term.So	this	means	if	not	search	term,	then	we're	going	to	check	the	session	storage.So	we	create	a	new	cost,	call	it	session	stale	equals,	and	then	we	also	have	to	import	a	function	that	we	created	in	the	helpers	file,	it's	up	here	at	the	top	with	the	market	with	helpers,	and	import	is	persisted	state	from	dot	dot	forward	slash	helpers.So	that's
our	function	that	we're	going	to	use	here.To	the	right	of	the	equal	sign,	we	call	that	function	is	persistent	state.And	for	our	homepage,	we're	going	to	create	a	state	that	is	called	the	home	state.So	we	are	hard	coding	in	the	string	here	for	this	one,	you	can	make	it	a	little	bit	more	elegant	if	you	want	to	do	that.But	I	have	a	string	here	that	I	call	home
state.So	that's	the	property	that	we're	going	to	write	to	the	session	storage.And	this	one	should	actually	be	called	stayed	like	this.Then	I'm	going	to	nest	in	another	if	statement	here.You	could	do	this	in	multiple	ways.But	I	think	this	one	is	more	readable	for	this	course.So	that's	why	I	have	a	nested	if	statement	here	also.So	if	session	state,	we	check	if
we	have	something	here,	then	we're	going	to	set	the	state	and	give	it	the	session	state.And	it's	also	important	that	we	return	because	we	don't	want	to	do	anything	else	here,	because	otherwise	it	will	fetch	it	from	API	also.And	this	is	all	that	we	need	to	retrieve	something	from	the	session	state,	we	make	sure	that	we	don't	check	the	session	storage	if
we're	in	a	search.But	if	we're	not	in	a	search,	we	check	if	we	have	something	here.And	if	we	have	something	in	the	session	storage,	we	set	the	state	with	the	form	that	we	retrieved	here.And	then	we	return,	we	return	early	from	this	use	effect.Otherwise,	it	will	work	as	before	here.We	set	the	state	first	with	the	initial	state	to	wipe	it	out.And	then	we
fetch	the	movies	from	the	API.All	right,	save	it,	just	make	sure	that	everything	works.And	it	does.So	that's	great.I'm	also	going	to	wipe	out	the	old	session	storage	here.This	one	is	from	react	dev	tools.So	when	you	delete	it,	it	will	create	a	new	one.Right.But	we	don't	actually	have	something	to	retrieve	yet,	we	also	need	to	write	something	to	the	session
storage.So	if	we	go	down	here	below	our	load	more	use	effect,	we're	going	to	create	another	use	effect.And	I	mark	it	with	right	to	session	storage.And	then	I	have	my	use	effect	like	this.This	one	is	going	to	have	a	dependency	rate.And	it's	going	to	write	to	the	session	storage	when	the	search	term	seniors	and	also	when	the	state	changes	and	yet
Again,	I	checked	if	not	search	term.Because	if	we're	in	a	search,	we	don't	want	to	write	that	one	to	the	session	storage.And	this	is	of	course,	optional.Also,	if	you	want	to,	to	save	the	search,	you	can	do	that	also.But	I	don't	think	that's	a	great	way	of	doing	it	to	have	your	last	active	search	on	the	homepage.So	that's	why.So	if	not,	in	a	search	term,	we
can	set	on	the	session	storage.And	this	is	the	same	as	before,	if	you	want	to	store	it	in	local	storage,	you	change	this	one	to	local	storage	instead.we	have	a	method	that's	called	set	item,	just	as	we	had	the	one	that's	called	get	item.In	this	case,	we're	going	to	set	it	the	first	argument	is	going	to	be	the	name	that	we	wanted	to	have	in	the	sessions	to
session	storage.And	for	this	one,	I	chose	the	name	homestead,	just	as	the	one	as	I	grabbed	up	here,	really	important	to	have	the	same	name.It's	a	hard	coded	string	there,	then	the	second	argument	is	going	to	be	what	we	want	to	write	to	the	state.And	if	you	remember,	I	mentioned	that	we	can	only	write	a	string	to	decision	storage	and	to	the	local
storage.So	we	have	to	stringify	it.And	we	can	do	that	with	JSON,	capital	letters,	dot	stringify.And	we	give	it	the	state	like	this.And	even	if	we	didn't	specify	these	ones	first,	you	can	see	that	it	complains	that	it	wants	to	search	term	and	the	state	now	so	this	is	the	linting	rules	for	hooks	that	is	included	in	create	react	app.So	it's	really	great	to	have	that
one.All	right.So	that's	how	we	write	to	the	session	storage,	save	the	file,	go	back	to	the	browser.And	you	can	already	see	when	I	say	the	file	it	that	it	wrote	the	whole	state	here	for	us.So	we	have	the	results	here.And	we	can	actually	go	back	to	the	code	and	do	some	console	logging.So	up	here	in	the	search	and	initial	inside	the	if	statement	where	we
grabbed	from	the	session	storage,	we	can	console	log,	grabbing	from	session	storage,	like	this.And	down	below	here,	we	can	console	log	grabbing	from	API	and	save	the	file.And	then	if	we	go	back	to	the	console,	you	can	see	grabbing	from	session	storage.And	if	we	reload	the	page,	it	works,	it	grabs	from	the	session	storage	all	the	time.And	then	go
back	to	the	application	here.And	we	delete	the	homestate	in	the	session	storage,	go	back	to	the	console,	reload	it.And	now	you	can	see	that	we	grabbed	from	the	API.So	if	we	load	some	more	movies	here,	a	few	of	them.And	then	we	reload	the	page,	you	can	see	that	we	have	them	here,	instantly.And	that's	because	we	save	it	to	the	session	storage.In
the	next	video,	we're	going	to	persist	the	state	in	the	session	storage	for	each	individual	movie.Okay,	one	more	thing	to	do	with	the	session	storage.And	that	is	to	store	each	individual	movie	in	the	session	storage.That's	what	we're	going	to	do	back	in	the	code	editor.So	we're	going	to	be	in	the	use	movie	fetch.And	we	only	have	one	use	effect	in	this
one.So	down	at	the	bottom	of	that	one,	we	run	that	fetch	movie	function.And	before	we	do	that,	we're	going	to	check	if	we	have	something	in	the	session	storage	just	above	that	one.Just	as	before,	we	create	a	const	that	we	call	session	state	equals.But	of	course,	first	we	also	have	to	import	that	function	up	here.To	mark	market	with	helpers,	an	import
is	persisted	state	from	dot	dot	forward	slash	help	us.Yeah,	I	don't	know	why	I	did	like	this.Okay,	to	the	right	of	the	equal	sign	here,	we	got	to	run	is	persistent	state.And	we're	going	to	check	for	the	movie	ID.Because	each	movie	is	going	to	be	stored	in	the	session	state	with	its	own	ID.So	that	will	give	us	null	or	the	actual	state.So	if	session	state,	if	we
have	a	session	state,	we're	going	to	set	the	state	and	give	you	the	session	state.And	then	we're	also	going	to	set	the	loading	to	false.This	one	because	we	setting	it	to	true	up	here,	when	we	start.That's	why	we	have	to	set	it	to	false	also	Otherwise,	it	will	keep	on	showing	the	spinner.Okay,	and	then	we	make	an	early	return,	just	as	we	did
before.Otherwise,	it	will	run	this	function	here	that	fetches	the	movies	from	the	API,	right	auto	format	it	and	save	it.But	we're	going	to	create	the	use	effect	also	for	writing	to	the	session	storage.Right	this	session	storage	then	we	create	our	use	effect.With	an	inline	IRA	function,	it's	going	to	have	a	dependency	array.And	it's	going	to	change	on	the
movie	IDs	change	and	the	state	change.And	these	actually	won't	change	because	we're	just	grabbing	data	one	time	for	each	movie.But	as	I	told	you	many	times	before,	you	should	specify	all	the	dependencies	for	each	use	effect.If	there's	something	that	won't	work,	because	you	specify	them	here,	you	should	handle	it	inside	of	the	use	effect.And	that
will	make	sure	that	you	have	less	errors	in	your	application.For	this	one,	we	don't	need	an	if	statements,	we	can	write	to	the	session	storage	dot	set	item,	and	we're	going	to	give	it	the	name	of	the	movie	ID,	each	movie	is	going	to	be	stored	in	the	session	story	with	its	own	ID,	that's	how	we	separate	them	out.Then	we	have	a	comma	and	we	give	it	the
state.But	just	as	before,	we	have	to	run	JSON	stringify.State,	because	we	can	only	write	the	string	to	the	session	storage.All	right,	save	this	one	and	go	back	to	the	application.And	here,	you	can	see	that	it	already	saved	the	movie	here.So	here's	the	movie	for	that	one.So	if	we	check	this	one	out,	I	think	it's	down	below	here,	you	can	see	that	it	will
instantly	grab	that	movie.And	if	we	choose	not	one,	here	it	is	zero	rights	to	decision	storage.And	next	time,	it	will	instantly	grab	it	because	this	one	here	you	can	see	where	the	loading	spinner	on	this	once,	but	next	time,	we	don't	have	to	reload	it.That's	how	you	utilize	the	session	storage	to	persist	the	state	in	your	application.In	the	next	section,	I'm
going	to	show	you	how	to	deploy	this	application,	it's	time	to	deploy	the	application.And	for	this	course,	I'm	going	to	show	you	how	to	deploy	it	to	netlify.I	think	netlify	is	a	great	and	very	easy	way	to	deploy	your	react	application.So	that's	why	I'm	not	sponsored	in	any	way	by	netlify.I	just	like	it.And	I	know	that	there's	a	lot	of	people	that	likes	it	also.So
I	think	netlify	is	a	good	choice	for	this.So	the	first	thing	you	have	to	do	is	to	create	an	account	at	netlify,	it's	free.So	make	sure	that	you	create	an	account.And	that	will	show	you	kind	of	a	dashboard	here,	I	have	a	lot	of	sites	here	now.So	yours	will	be	empty	if	you	don't	have	an	account	already.So	make	sure	to	create	an	account	at	netlify.We	will	need
it	in	the	next	video.So	in	this	video,	I'm	going	to	show	you	how	to	create	a	production	build	of	the	application	that	we're	going	to	deploy	to	netlify.So	back	into	the	terminal	and	create	react	app	is	really	simple	to	use.It	has	a	built	in	command	that	we	can	use	to	build	our	site.So	make	sure	that	you're	inside	your	application	folder.And	then	you	run
NPM,	run	build	like	this.And	this	will	build	the	application	for	us.As	it	says	here,	it	will	create	an	optimized	production	build	for	us.So	that's	great.And	it	will	place	it	in	a	folder	that's	called	build.If	we	move	inside	our	code	editor	again,	we	can	see	that	we	now	have	this	folder	that's	called	build.And	this	is	a	complete	site	in	here.It's	the	it's	the
production	build	of	our	site,	we	have	to	do	one	small	thing	here	when	we're	deploying	to	netlify	if	we	want	our	routing	to	work	correctly,	because	for	example,	I	can	show	you	here,	this	is	the	site	here.If	I	go	to	this	site	and	choose	a	movie,	grab	this	URL,	that's	the	direct	URL	to	the	movie,	and	then	paste	it	in	here,	you	can	see	that	it	works	now.And
that	is	because	I	created	that	little	file	that	we're	going	to	do	now.Otherwise	it	won't	work,	it	will	show	an	error	here.And	that's	because	we	using	in	with	react	router.So	that's	why	we	have	to	have	that	little	file.So	back	inside	of	the	code	editor.And	inside	a	build	folder	at	the	root	create	a	new	file,	the	name	is	going	to	be	underscore	redirects	like	this,
it's	very	important	that	you	name	it	exactly	like	this	underscore	redirects.And	then	inside	of	that	one,	we're	going	to	type	in	forward	slash	asterisk,	forward	slash	index	dot	HTML,	space	and	200.And	this	will	make	sure	that	the	routing	will	work	in	our	application.So	save	the	file.And	now	we	ready	to	deploy	it	on	natla	phi.So	that's	what	we're	going	to
do	in	the	next	video.I'm	going	to	show	you	two	ways	in	this	video	how	to	deploy	your	site	to	nullify,	and	the	first	one	is	going	to	be	really	easy	actually.Because	if	you	log	into	your	account	at	nullify,	and	you're	at	this	dashboard	side,	down	below	at	the	bottom,	you	will	have	this	little	sewn	here	where	you	can	drop	your	site	want	to	deploy	a	new	site
without	connecting	to	get	drag	and	drop	your	site	folder	here.And	this	is	really	sweet	with	netlify	actually.So	if	we	grab	our	folder,	that's	the	folder	here	where	the	complete	application	is	your	working	folder	with	application,	you	have	the	folder	inside	of	that	one	that's	called	build.So	make	sure	that	To	grab	the	build	folder	that	we	build	in	the	last
video,	and	just	drag	and	drop	it	here,	you	can	see	that	netlify	starts	to	build	your	site.And	I	actually	didn't	have	time	to	finish	that	sentence	before	it's	published	my	site.So	you	have	the	link	here,	it	will	create	a	randomly	generated	name,	you	can	change	that	if	you	want	to	do	that,	click	this	link.And	you	can	see	that	your	application	is	up	and
running.So	that's	how	easy	it	is	to	deploy,	who	would	nullify,	that's	one	way	of	doing	it.Another	way	is	to	use	something	that's	called	the	netlify	COI.And	that's	what	we're	going	to	do	next.So	make	sure	to	be	inside	of	your	terminal.So	of	course,	you're	going	to	be	in	the	folder	where	your	application	is,	we've	already	built	our	application,	otherwise,	you
have	to	build	it.So	NPM,	run	build,	and	also	add	in	that	little	file	that	I	showed	you	in	the	last	video	for	the	routing	to	work	in	nullify,	then	we're	going	to	install	the	natla	phi	COI,	I	have	already	installed	it,	but	I	can	show	you	again,	of	course	NPM,	install	netlify	dash	c	ally	dash	D.So	that	means	that	I	install	it	globally.Alright,	that	installed	correctly,
I'm	going	to	clear	my	console.And	then	we	can	run	nullify	deployed	like	this.And	then	you're	faced	with	different	questions	here.So	in	this	case,	we're	we're	going	to	create	and	configure	a	new	side.So	make	sure	that	you	navigate	down	to	that	one.And	it's	waban	Fox	team,	in	this	case,	you	will	probably	also	just	have	one	team	to	choose	from.So	select
that	one.And	then	you	can	create	a	site	name,	if	you	want	to	do	that.I	won't	do	that	now.But	you	can	also	change	it	later.So	we'll	use	the	default	and	just	press	enter	here.And	then	it	asks	for	the	public	directory	down	here.And	if	you	remember,	the	Publish	directory	is	the	build	folder.So	we	type	in	dot	forward	slash	build	and	press	Enter.And	there	you
have	it,	but	the	site	isn't	actually	live	yet,	because	we	now	have	the	opportunity	to	see	if	our	site	works.So	you	have	a	website	draft	URL,	we	can	click	that	one.and	here	we	can	try	our	application	to	see	that	it	works	before	we	actually	go	live	with	it.Right,	it	seems	to	be	working	back	to	the	terminal.And	if	we	read	here,	we	can	add	the	dash	dash	prod
flag	if	we	want	to	go	live	with	it.So	we	run	nullify	deploy	dash	dash	prod	and	this	will	make	it	go	live.Yeah,	of	course,	I	shouldn't	have	space,	it	should	be	dash	dash	prod	like	this.And	the	public	directory	is	just	as	before	dot	forward	slash	build.And	you	are	provided	with	a	couple	of	URLs	here.So	this	is	the	unique	deploy	URL	for	this	deploy.This	isn't
actually	the	live	site.So	this	is	the	live	site	here	on	this	link,	you	can	click	that	one	and	open	it	up.But	I	want	to	go	inside	of	natla	phi	and	check	that	is	actually	here,	you	can	see	that	is	here.So	you	can	click	this	one	and	see	if	it	works.And	it	works.And	that's	sweet.So	that	that	is	actually	also	quite	simple	to	do	it	in	the	terminal	like	this.So	if	you	change
something	in	your	application,	you	can	deploy	it	very	easily	without	logging	into	netlify	from	the	browser.So	you	just	type	in	netlify	deploy.And	if	you	know	that	it	works,	you	can	flag	it	with	prod	like	this.And	you	can	do	this	every	time	you	change	something	on	your	site.Alright,	in	the	next	video,	I'm	going	to	show	you	how	to	deploy	with	continuous
deployment.That	means	when	you	change	something	and	push	it	to	GitHub,	I'm	going	to	use	GitHub	for	that	one	is	going	to	deploy	it	automatically.Okay,	we're	going	to	talk	about	continuous	deployment	on	netlify.Now,	and	that	means	that	you	can	have,	for	example,	in	this	case,	I	have	a	repository	on	GitHub	that	I'm	going	to	use	for	this	one,	I
published	my	site	here	to	get	up	and	I'm	going	to	use	this	one	for	continuous	deployment.And	that	means	that	when	I	push	something	to	this	repository	here,	netlify	will	automatically	build	my	site	and	publish	it.So	that's	really,	really	neat.Actually,	just	make	sure	that	you	add	to	Git	ignore	file	to	not	upload	the	dot	m	file.And	also	just	one	other	thing
you	have	to	do,	and	that	is	the	file	that	we	created	in	the	build	folder,	you	have	to	move	that	one	inside	of	the	public	folder	instead,	you	can	see	that	I	have	the	underscore	redirects	in	the	public	folder.And	this	will	make	sure	that	this	one	is	included	when	netlify	builds	the	side.So	that's	all	you	have	to	do	and	push	it	to	your	repository.I'm	using	GitHub,
you	could	use	Bitbucket	or	some	other	service	if	you	want	to	do	that.So	this	is	the	complete	side.Then	I'm	going	to	move	inside	of	nullified	and	I'm	at	my	dashboard.You	have	something	that's	called	new	side	from	get	I'm	choosing	Get	up	because	that's	what	I'm	using.So	it's	authorized	me	here.So	you	have	to	log	in,	then	I	can	search	for	my	name	is
RM	DB	version	three.So	I	select	that	repository.And	we're	going	to	build	from	the	master.That's	correct.The	command	is	going	to	be	MPM	run	build.And	we	the	Publish	director	is	the	build	folder.So	that	is	correct.But	we	have	one	more	thing	to	do,	because	we	have	an	environmental	variable	for	our	site.So	we	have	to	set	that	one	up	also	Show
Advanced.and	here	we	can	create	a	variable	new	variable.So	you	can	set	the	name	here	and	the	name	is	going	to	be	react	underscore	app	underscore	API	underscore	key,	just	as	the	one	that	we	had	in	our	application	in	the	dot	env.file.Alright,	there,	we	need	to	give	it	some	value.And	here,	we	can	give	it	the	API	key	to	the	Movie	Database	API.So	I'm
obviously	not	going	to	show	that	for	you.So	I'm	going	to	paste	that	one	in.And	then	I'm	going	to	click	Deploy	site.So	make	sure	that	you	also	paste	in	your	key	here,	and	then	click	Deploy	site.And	now	we	just	wait	for	it,	it's	going	to	build	the	site.So	it	will	take	a	little	bit	longer	now.And	hopefully	this	will	work.And	if	we	want	to	see	the	build	log,	we
can	also	do	that	by	clicking	here	deploying	your	site,	and	it	will	show	us	the	log.And	there	you	have	it,	the	site	is	live,	it	says	here,	so	we're	going	to	try	that	out.Go	back	to	our	dashboard.And	here's	the	side.Click	the	link,	we	make	sure	that	it	works.And	it	does.And	that	is	great.Just	going	to	make	sure	also,	that	these	unique	links	work	if	we	paste	that
one	in.Yeah,	and	it	works.Sweet,	sweet,	sweet.This	is	how	you	publish	on	netlify.And	this	also	concludes	the	main	part	of	this	course,	I	hope	you	enjoyed	it,	there	are	some	bonus	parts.In	the	next	part,	I'm	going	to	show	you	how	to	use	class	components	instead	of	hooks.And	then	I'm	going	to	show	you	how	to	convert	this	application	into
TypeScript.And	lastly,	I'm	going	to	show	you	how	to	use	the	login	and	vote	system	for	the	Movie	Database	API.We're	going	to	reflect	our	application	into	using	class	components	instead	of	react	hooks.I	actually	don't	use	class	components	anymore.And	I	think	a	lot	of	people	don't	do	it.But	the	chances	are	that	if	you	get	a	job	as	a	react	developer,	you
will	work	with	a	code	base	that	at	least	has	some	class	components.So	there's	a	lot	of	applications	out	there	that	still	has	class	components	in	it.And	it's	actually	not	even	deprecated	from	the	React	libraries.So	it's	a	legit	way	of	creating	components	in	react.So	in	some	sense,	it's	a	matter	of	preference.I	don't	think	I	ever	will	use	them	again,	actually,
because	I	love	hooks.And	I	always	use	functional	components	with	hooks.But	I	want	to	show	you	how	to	do	it	with	class	components	also.And	there's	three	components	that	we	have	to	refactor	because	we	have	three	components	with	stadium.And	that's	the	search	bar	to	home	and	the	movie.And	we're	going	to	start	with	the	search	bar.So	make	sure
that	you're	inside	index.js	file	in	the	search	bar	folder.And	there	will	be	a	lot	of	errors	and	warnings	here	when	we	remove	stuff	here	now,	but	we'll	fix	that	as	we	go	along	in	this	video.So	first	of	all,	this	one	is	a	functional	component,	we	want	it	to	be	a	class	component.And	then	up	here,	instead	of	importing	use	state	use	the	fact	that	you	use	ref,	we
can	import	something	that's	called	component	like	this.And	instead	of	the	const	here,	we	delete	all	of	this	here.And	we	create	a	class	that	we	call	search	bar	just	as	before	the	same	name,	and	it	extends	component.So	if	we	did	an	important	one	up	here,	we	had	to	specify	extend	react	dot	component,	this	is	a	little	shortcut	you	can	do	here.So	we	can
remove	these	ones	here.In	a	class	component,	you	have	one	class	property,	that's	called	state.And	that	is	the	only	state	holder	you	have.So	that's	one.So	that's	one	downside	with	classes.If	you	use	you	state	and	react	hooks,	you	can	have	as	many	states	as	you	want	to	separate	them	out.Here	we	only	have	one.So	we	have	the	class	property.That's
called	state.And	now	you	can	see	that	I'm	not	using	the	constructor	like	this.Because	we	don't	need	to	do	that	Babel	and	Webpack	will	make	sure	that	it	will	be	transpiled	down	correctly.So	we	have	this	class	property	here.That's	called	state	and	it	equals	an	object.We're	going	to	have	a	property	that's	called	value,	and	it's	an	empty	string.So	that's	the
value	for	our	input	field	in	the	search	bar.And	then	we	also	got	to	have	a	class	property	that's	called	timeout.And	we	set	that	one	to	know	right,	the	use	effect	we	can	use	That	one	anymore.But	we	can	reuse	this	logic	here	for	the	timer.So	I'll	remove	these	ones	for	now.And	in	a	class	component	in	react,	you	have	something	that's	called	lifecycle
methods.And	there's	three	of	them	that	you	should	know,	that's	probably	the	most	used	once	you	have	one	that's	called	component	did	mount.And	that's	the	one	that's	going	to	trigger	initially	in	the	component.And	then	you	have	another	one	that's	called	component	did	update,	and	that's	the	one	that	we're	going	to	use	now.And	then	you	have	the	last
one	that's	called	component	will	unmount.And	that	one	is	triggered	just	before	the	component	will	unmount.And	in	that	one,	you	can	do	some	cleanups	and	stuff	like	that.But	we're	going	to	use	to	underscore	component	did	update.And	you	could	do	this	in	several	ways,	you	don't	actually	have	to	use	this	lifecycle	method	to	get	this	to	work.But	I	want
to	use	it	here	to	show	you	how	this	lifecycle	method	works.So	component	did	update	like	this,	this	one	is	going	to	give	us	the	previous	props	and	the	previous	state.So	I	make	an	underscore	prep	props,	we're	not	going	to	use	the	props,	because	we	don't	need	to	check	against	the	previous	props.So	market	with	an	underscore	just	to	tell	that	we	won't
use	that	one.And	then	we	have	the	prep	state,	the	prep	state	we	will	use.Alright,	so	that's	the	component	did	update	lifecycle	method.And	this	one	will	trigger	on	each	update	on	the	component.So	what	do	we	want	to	do	here,	now	the	state	here	with	value	is	going	to	be	the	text	that	the	user	typed	in,	in	the	input	field,	because	this	is	a	control
component	to	keep	it	in	the	state.So	we	want	to	check	if	this	dot	State	DOT	value,	it's	the	value	here.And	as	this	is	a	class,	we	have	to	use	this.So	this	dot	State	DOT	value,	if	that	one	isn't	equal	to	the	prep	State	DOT	value,	we	want	to	do	something	otherwise,	we	will	go	into	an	infinity	loop	here,	and	that's	no	good,	we	check	here,	if	the	value	in	the
state	isn't	the	same	as	the	previous	one,	then	we	know	that	we	should	do	something.All	right.And	then	we	have	one	prop	that	sent	in	to	this	component,	and	we	can	destructure	that	one	out.So	const,	it's	called	set	search	term	equals	this	dot	props.So	we	destructure	this	one	out	from	the	props.Because	we	send	in	this	function	here,	that's	going	to
trigger	when	we	do	a	search,	then	we	have	a	timeout.It's	the	one	here	to	copy	this	one,	move	it	inside	of	there.Instead	of	const	timer,	we're	going	to	set	this	one	to	this	timeout	that	we	created	up	here.So	this	doc	timeout,	is	going	to	equal	this	one	here.And	the	first	thing	we	also	have	to	do	is	to	clear	this	timer,	so	clear	timeout,	this	stop	timeout,	and
this	is	why	I	have	this	appears	so	that	we	can	access	it	here	and	clear	it	before	we	do	something	else.Alright.And	inside	of	this	timeout	here,	we're	going	to	grab	our	state	value.And	we	can	also	destructure	that	one	out.So	cost	value	equals	this	dot	state.So	we	grabbed	that	property	from	our	state.And	instead	of	the	state	here,	we	give	it	the	value	like
this.So	every	time	we	type	something	in,	we're	going	to	set	the	state	and	that	will	update	the	component,	and	it	will	trigger	this	one,	we	cleared	the	current	timeout	and	then	we	set	a	new	one.And	at	every	500	milliseconds,	we	will	trigger	this	search	function	just	as	we	did	before.Then,	in	the	class	component,	we	have	a	render	method.And	inside	the
render	method,	we	can	return	this	logic	here,	we	can	grab	this	one,	turn	it	out	and	paste	it	inside	a	render	method	like	this.And	this	one,	we	have	to	change	this	one,	this	dot	state	value.And	also	when	we	set	the	stage	this	one	is	incorrect	here,	we	should	specify	this	dot	set	state.And	our	state	will	look	like	this	we	have	an	object	like	this	URL,	we	have
appropriately	this	called	value.And	the	value	here	is	going	to	be	the	same.And	now	you	can	see	we	don't	have	any	errors	in	this	component.And	that's	great.If	you	want	you	can	also	destructure	this	value	out	up	here	just	before	the	return	statement,	cost	value	equals	this	dot	state	like	this,	and	then	we	can	use	the	value	like	this	instead.Save	the
component,	go	back	to	our	application,	make	sure	that	you're	running	the	application,	then	we	can	try	if	it	works,	and	it's	working.So	it	works	exactly	as	before,	we're	just	using	a	class	instead	now.So	this	is	how	we	refactor	the	search	bar	to	a	class	component	instead.In	the	next	video,	we're	going	to	refactor	the	homepage.We	refactor	the	search	bar
into	a	class	component.And	now	we're	going	to	refactor	the	home	component.So	make	sure	that	you're	inside	the	home.js	file.And	first,	we	can	remove	this	hook	here,	like	this,	and	up	here,	we're	going	to	import	the	component	and	the	home	function,	we	create	a	class	called	home	that	extends	component	like	this.And	the	use	on	fetch,	we're	not	going
to	use	that	one,	we're	going	to	copy	that	logic	and	use	it	inside	of	this	component	instead.So	we	have	our	state	equals	an	object.And	I'm	going	to	have	a	property	for	this	one,	that's	called	movies,	that's	going	to	hold	the	array	with	all	the	movies.And	I'm	going	to	give	it	the	initial	state.And	this	one,	we	have	that	one	inside	of	our	hooked,	that's	called
use	home	fetch.So	copy	this	one.And	we	can	paste	it	in	maybe	here,	he	need	she	stayed,	he	need	to	stayed.Yeah,	it	shouldn't	be	a	see	my	column,	because	this	is	no	big.So	we	have	a	comma.And	then	we're	going	to	have	the	search	term,	because	now	we	have	everything	in	the	same	state.We	can't	separate	them	out,	then	we	have	is	loading	more	is
going	to	be	set	to	false	initially.And	we	have	loading	is	also	going	to	be	set	to	false.And	we'll	have	the	error	false.So	this	is	how	the	structure	of	a	state	is	going	to	be.Yeah,	I	said	I	did	this	one	is	going	to	be	an	array,	but	it's	going	to	be	an	object.And	then	we'll	have	the	results,	that's	going	to	be	an	array	that	holds	all	the	movies.So	you	can	structure	it
however	you	want.This	is	the	way	I	choose	to	structure	it	the	movies	is	the	data	that	we	get	back	from	the	API,	and	the	other	ones	are	the	ones	that	we	create	ourselves.All	right.Then	we're	going	to	make	some	room	here	and	go	back	to	the	use	home	fetch	hooked.We	have	our	fetch	movies	function	here,	to	grab	that	function.Everything,	copy	it,	go
back	to	the	home.js	file	and	paste	it	in	here.Below	the	state,	we	have	to	remove	const.That's	movies,	it's	the	same	here.Here,	we	have	to	do	something	else,	because	we	don't	have	the	state	as	separate	states.Now,	to	remove	these	ones.And	this	doc	set	stayed,	we	have	our	object,	we	set	the	error	to	false.And	we	set	loading	to	true	like	this.And	here
you	can	see	we	only	changing	the	properties	that	we	want	to	change,	React	will	merge	the	other	ones	automatically.And	this	is	actually	different	from	how	the	state	works	in	a	functional	component	with	use	state.With	the	use	state	hook	it	won't	merge	the	old	Stadium,	they	also	have	to	make	sure	that	you	also	provided	one	if	you	want	to	keep	it.But	in
this	case,	we	changing	the	error	and	the	loading	here	and	other	ones	will	stay	the	same.So	this	is	how	it	works	in	class	components.All	right,	we	have	our	movies,	this	one	is	going	to	be	the	same.The	set	state	is	going	to	be	quite	different	now.First,	I'm	going	to	spread	out	the	previous	state.And	then	I	gotta	have	my	movies	properties.Because	inside	of
this	movies	property	that	we	created	up	here,	we're	going	to	place	everything	that's	returned	from	the	Movie	Database	API.And	that's	the	stuff	that	we	have	here,	I'm	actually	going	to	remove	the	sidebar	also.So	move	this	one	up	inside	of	the	movies	object	here.So	we	spread	out	the	previous	movies	and	never	have	the	results.And	then	we	check	if	the
page	is	greater	than	one	just	as	before.But	here	we	have	to	change	this	one	because	from	the	previous	state,	we	also	have	to	go	inside	the	movies	property,	like	this.So	prep	dot	movies	dot	results.The	movies	dot	results	is	going	to	be	the	same	here	because	this	is	the	new	data	that	we	grabbed	from	the	API,	so	we	merge	that	one.This	one	is	also	going
to	be	the	same.So	this	is	our	set	state	for	the	movies	and	then	below	we	have	a	coma	and	then	we	set	loading	False.And	then	inside	of	the	catch,	we	don't	have	a	set	error.So	this	set	stayed.We	set	the	error	to	true.And	we	also	set	the	loading	to	false.Like	this,	we	can	remove	this	set	loading	here.This	is	our	fetch	movies	method.That's	called	a
method.Now	because	we're	in	a	class,	then	we	don't	have	the	use	effect	here	to	trigger.So	we're	going	to	have	a	few	functions	here,	we're	going	to	have	one	that's	called	handle	search.equals,	we	have	the	search	term,	or	create	an	arrow	function	for	this	one.And	when	we	search	for	something,	we're	going	to	call	this	set	state	parenthesis	and	we	have
our	state	object	movies,	we're	going	to	set	the	movies	to	the	initial	state	just	to	reset	it	just	as	before.And	then	we	also	give	the	state	the	search	term.And	as	this	is	a	sixth	syntax,	we	don't	have	to	specify	it	like	this,	it's	enough	to	just	specify	search	term	when	the	name	is	the	same.Okay,	so	we	set	this	state	and	when	we	have	set	the	search	term,	and
also	reset	the	movies	to	the	initial	state,	we	want	to	do	something	when	that	state	has	updated.And	in	a	react	class	on	the	set	state,	we	have	a	callback	function	that	we	can	use	that	will	trigger	when	the	new	state	is	set.So	we	have	a	coma,	and	I	create	an	inline	arrow	function	here	and	go	on	another	row	here.So	then	we	want	to	fetch	the	movies,	this
dot,	that's	movies.And	we	give	it	the	one	because	we're	fetching	from	page	one,	this	dot	stayed.And	we	give	it	a	search	term,	like	that.And	we	can	actually	remove	those	curly	brackets,	I	don't	think	we	need	them.If	we	don't	want	to	have	them,	it's	up	to	you	to	decide.All	right,	so	that's	the	search,	then	we	have	the	handle	handle	load	more	function.And
it's	only	going	to	be	an	arrow	function	like	this.And	I'm	going	to	type	it	in	on	another	row,	this	dot	fetch	movies.And	from	this	dot	State	DOT	movies,	we	have	the	page.And	we're	going	to	add	one	to	the	page,	because	now	we're	grabbing	the	next	page.And	then	we	give	it	the	start	state	the	search	term.So	we	also	provide	a	search	term	if	we're	in	a
search,	right?	The	movie	ID,	it	complains,	here,	we	have	to	specify	the	types.It	was	specified	as	a	number.And	the	use	state	here,	it	doesn't	know	what	state	is	this	actually.So	we're	going	to	specify	the	state,	we	have	the	angle	brackets,	and	then	we	can	give	it	the	movie	state.And	then	it	will	know	that	this	state	will	have	this	type.But	it	complains	now,
and	that	is	because	we're	setting	it	to	an	empty	object.And	it	doesn't	like	that,	because	we	say	that	it	can	only	be	a	movie	state.So	we	could	do	it	like	this,	if	we	want	to	tell	it	that	it	can	also	be	an	empty	object.Or	we	can	do	as	we	did	before,	we	say	as	movie	stayed,	like	so.And	it	won't	complain	anymore.So	that's	everything	we	have	to	do,	I	think	the
movie	ID	okay.Yeah,	we	also	have	to	make	this	a	string	because	this	persistent	state	function	is	taking	in	a	string.And	this	is	actually	a	number	enough.So	you	can	see	how	great	it	is	with	TypeScript,	because	it's	telling	us	when	we're	doing	something	wrong,	so	we	convert	this	one	to	a	string	with	a	built	in	function	like	this.And	then	I	bet	it's	the	same
here	yeah.to	string,	like	so.And	this	will	hopefully	be	it.Back	inside	a	movie	dot	TSX	file.Yeah,	and	this	is	because	we	get	a	string	back	from	the	API.And	now	it	wants	a	number.So	we	can	convert	this	to	a	number.And	there	are	smoother	ways	of	doing	this.So	you	don't	have	to	convert	it	like	this.But	I	think	it's	a	great	practice	in	TypeScript.So	that's
why	I	did	it	this	way.So	we	can	convert	it	because	TypeScript	will	complain	if	we	send	in	the	wrong	type.But	of	course,	we	could	be	more	consistent	and	refactor	some	stuff	in	the	use	movie	set	and	also	in	the	API	file,	to	specify	the	correct	type	from	the	beginning.With	course	in	the	API	here,	you	can	see	that	the	movie	ID	is	a	number,	we	could	specify
this	as	a	string,	instead,	we	can	actually	do	that.So	we	make	this	a	string.Or	we	specify	this	as	a	number,	this	one	should	be	a	string.And	we	save	it	go	back	to	the	movie.And	now	it	should	work.Yeah.So	that's	probably	the	way	to	do	it	instead.So	you	don't	have	to	do	all	this	converting.And	now	we	have	to	refactor	the	components	that	we	use	for	the
movie	page	also.So	let's	begin	with	actors,	right,	the	dot	styles	is	going	to	be	active.stars.ts.And	index	is	going	to	be	dot	TSX.We	don't	have	any	props	in	the	styles.So	we're	only	going	to	be	in	the	index	dot	TSX.Remove	the	prop	types	just	as	before.And	then	we	have	the	types.types,	I	created	type	props	equals	an	object,	we	have	the	name	is	going	to
be	a	string,	the	character	is	going	to	be	a	string,	the	image	URL	is	going	to	be	a	string	also,	we	specify	this	so	react.fc.And	I	give	it	to	props.Just	as	before,	save	the	file,	then	we're	going	to	be	in	the	breadcrumbs.So	rename	this	one	also.ts.And	the	index	is	going	to	be	dot	TSX.Same	goes	with	the	stars.We	don't	have	to	do	anything	but	in	the	index	dot
TSX.Remove	the	prop	types.A	lot	of	repetitive	stuff	here,	but	that's	great	when	you	learn	things.As	I	told	you	before,	I	specified	a	types	type	of	props	equals	an	object.We	have	the	movie,	that's	the	URL,	so	it's	a	string.And	then	this	one	is	going	to	be	a	rec.fc	and	where	the	angle	brackets	and	give	it	to	props.Yeah,	I	actually	named	it	movie	title.That's
what	it	should	say.Right,	that's	the	breadcrumb.Then	we	have	the	movie	info	renamed	the	index.js	to	index	dot	TSX	and	the	movie	info	tiles	is	going	to	be	renamed	to.ts.And	the	story	in	the	stars	because	this	one	was	sending	in	some	props	to	up	here,	a	market	with	types	created	type	props,	equals,	we	have	the	backdrop,	and	is	going	to	be	a
string.Just	as	before,	we	have	the	angle	brackets	here	on	the	component	that	we	crave,	and	we	send	in	the	props.Don't	know	why	it's	still	red.Yeah,	that's	because	this	one	should	be	named	animated	movie	info	like	this.So	yet	again,	you	see	TypeScript	is	great,	because	it	will	warn	us,	if	we	don't	do	stuff	the	right	way,	it	will	warn	us	save	it.Because	I
didn't	see	this	actually,	when	I	created	it	before	in	the	course,	I	forgot	to	name	this	one.And	I	didn't	see	a	warning.But	now	TypeScript	warns	me	about	this,	save	the	file,	and	go	inside	the	index	dot	TSX	file	like	this,	we	remove	the	prop	types.And	we're	going	to	have	some	types	for	this	one.For	this	one,	I'm	going	to	import	the	movie	state	from	dot	dot
forward	slash	dot	dot	forward	slash	hooks,	and	use	movie	fetch.Like	so.And	then	I	also	going	to	specify	a	type	props	equal	an	object,	and	we	have	the	movie,	and	the	movie	is	going	to	be	the	movie	state	type.So	you	can	see	here	I	import	the	types,	I	don't	have	to	specify	them	again.I	mean,	if	you	really	love	structure,	you	can	create	specific	files	for
your	types	and	have	them	inside	of	those	files.All	right,	movie	info,	it's	going	to	be	a	react.fc	are	going	to	give	it	to	props,	like	so.Alright,	then	it	complains	here,	this	one	shouldn't	be	here.And	compliance.Again,	I	did	a	mistake	here.And	you	see	TypeScript	is	great.It	tells	me	that	this	mistake	Yeah.And	that's	because	I'm	not	providing	a	movie	ID	for
this	one,	because	we	shouldn't	be	able	to	click	it.So	go	back	inside	of	the	thumb.And	this	one,	movie	ID	should	be	set	to	optional,	you	can	set	an	optional	prop	with	a	question	mark	like	this,	save	the	file,	go	back.And	you	can	see	that	the	warning	disappeared	from	the	movie	info.Alright,	save	that	file.And	we'll	have	one	more	component	to	go.That's	the
movie	info	bar,	rename	this	to	dot	TSX.And	the	styles.ts,	we	don't	have	to	do	anything	with	the	styles.And	inside	the	index,	we	remove	the	prop	types	like	this.And	then	we	specify	the	types.So	I	have	a	type	props.An	obit	time	is	going	to	be	a	number,	the	budget	is	also	going	to	be	a	number	and	the	revenue	is	going	to	be	a	number.And	then	we	specify
this	as	the	rec	FC,	we	have	the	angle	brackets	and	give	it	to	props,	we	auto	format	it.And	it	should	hopefully	work,	save	the	file.And	this	my	friend	should	be	it	actually	we	have	successfully,	hopefully,	refactor	this	one	into	TypeScript.So	let's	make	sure	that	it	works.Go	inside	the	terminal	and	run	NPM	start.And	it	works.super	great.There	you	have	it,
you	have	a	TypeScript	application	now.And	everything	works	as	it	should.No	arrows	anywhere.Sweet.There	is	the	TypeScript	part.And	in	the	next	part,	I'm	going	to	show	you	some	extra	stuff	that	the	Movie	Database	can	do.And	that	is	a	neat	little	login	system.And	then	you	can	vote	on	the	movies.We've	reached	the	last	section	of	this	course.So	first,
congrats	to	you	because	we've	come	a	long	way	in	this	course.And	I	hope	you've	learned	something	about	react.In	this	part	of	the	course,	I'm	going	to	show	you	how	to	create	a	login	for	the	Movie	Database	API	from	our	application,	and	you	will	be	able	to	vote	on	the	different	movies.So	first,	I	just	want	to	show	you	on	developers	dot	the	movie	db.org
what	we're	going	to	use	to	make	the	login	work.So	down	here	where	it	says	movies,	I	clicked	on	this	one,	you	can	see	the	complete	API	for	the	movies.And	they	have	one	here,	that's	a	post	that's	called	rate	movies.So	this	is	the	one	that	I	clicked	on	here.And	by	posting	to	this	URL	here,	we	can	rate	the	movies	and	we	have	to	provide	our	API	key	and
we	Also	to	provide	a	session	ID.So	that's	where	we	do	the	login.And	the	login	is,	I	think,	somewhere.People	search,	where	do	they	have	a	authentication,	they	have	a	lot	of	stuff	here.And	first	you	have	to	create	a	request	token.And	then	we	create	a	session.So	we	get	a	session	IDs.So	there's	two	steps	you	have	to	do	to	be	able	to	log	in.And	they	also
recommend	you	to	actually	reroute	to	the	Movie	Database	for	making	the	login.But	it	also	provided	with	a	solution	here	that	we	don't	actually	recommend	where	you	can	log	in	from	your	own	site	without	leaving	that	application	or	the	site.So	that's	the	one	I'm	going	to	use	here.And	the	reason	for	this	bonus	chapter	in	the	course	is	actually	that	I	want
to	show	you	how	to	create	a	global	context	and	store	the	user	the	logged	in	user	in	that	global	context.That's	the	main	part	that	I	want	to	show	you.And	also,	I	got	a	lot	of	requests	to	show	how	to	make	a	login	form	and	be	able	to	vote	on	the	movies.There	is	one	thing	though,	that's	not	going	to	work	with	this	solution.Because	it's	not	a	fully
solution.Really,	in	this	case,	you	have	to	use	your	login	from	the	movie	database	to	be	able	to	log	in.So	we	won't	be	able	to	create	a	new	users	and	stuff	like	that.And	the	best	thing	would	probably	be	to	build	your	own	API,	your	own	back	end	somehow	to	have	your	users	log	in	there	and	save	data	so	that	you	can	save	all	the	stuff	about	the	user.So
there's	a	lot	of	different	approaches.And	this	is	absolutely	not	a	fully	login	system	and	voting	system.I	just	want	to	show	you	some	small	tips	and	tricks	here	to	get	you	started	if	you	want	to	create	your	own	fully	functional	logging	system,	and	stuff	like	that,	Okay,	so	let's	get	to	it.I'm	just	going	to	show	you	the	code	shortly	here,	before	we	move	on	in
the	api.js	file.I	have	created	these	functions	for	us	here	down	below	this	comment	to	your	bonus	material	below	for	login,	I	have	a	function	that	called	GET	request	token	so	that	that	will	obviously	get	the	request	token	from	the	API.And	then	I	have	this	one	that's	called	authenticate.And	I	did	some	comments	here	also.So	first,	we	have	to	authenticate
the	request	token	that	we	get	from	this	one.And	then	we	have	to	get	the	session	ID	with	a	request	token.So	there's	actually	three	steps	and	not	to	order	them	because	we	have	to	get	the	request	token	first.And	then	we	authenticate	that	request	token.And	then	we	get	the	session	ID	and	then	we	are	logged	in.And	then	I	have	this	function	down	below
here.That's	called	rate	movie.And	this	one	will	send	a	rating	score	to	the	Movie	Database	API,	and	hopefully	return	an	object	that	says	that	we	were	successful.So	that's	what	we're	going	to	be	using	in	this	part	of	the	tutorial.So	let's	get	started.In	the	next	video,	we're	going	to	create	a	global	context	and	a	global	state	that	we	can	use	to	store	the	user
in.Alright,	let's	start	by	creating	a	context	for	our	application.And	we	are	touching	on	China	have	advanced	stuff	now	in	react.So	don't	feel	bad	if	you	don't	understand	all	of	this	stuff	the	first	time.All	right	inside	the	src	folder,	we're	going	to	create	a	new	file	that	we	call	context,	dot	j	s.all	lowercase	letters	seem	to	be	in	the	root	of	the	SRC,	not	in	the
components	or	anything	like	that,	in	the	root	of	this	are	See,	I	can	close	this	one	here.So	we	have	the	context.js	file,	and	inside	of	that	one,	we're	going	to	import	react,	comma	and	the	use	state	that	we	imported	from	react,	then	I'm	going	to	create	something	that's	called	a	context	in	react.And	when	we	create	a	context,	we	are	creating	something	that
will	make	it	possible	for	us	to	provide	our	application	with	something	in	this	context	that	we	want	to	use	down	in	the	component	tree	in	the	application.In	this	case,	it's	going	to	be	estate	value	and	a	setter	that	we're	going	to	use.So	the	context	can	be	any	value	that	you	want	to	provide	down	to	your	application.But	it's	really,	really	handy	if	we	want	to
have	a	state	and	a	setter	that	we	want	to	be	able	to	access	from	anywhere	in	the	application.So	I'm	going	to	export	this	one	because	we	have	to	import	the	context	in	the	component	where	we	want	to	use	it.So	export	const,	I	call	it	context.With	capital	C,	you	can	call	it	whatever	you	want.It	doesn't	need	to	be	named	context.And	from	react.we	have
something	that's	called	create	context.And	I	call	this	one.You	could	also	of	course,	imported	up	here,	like	this.We	can	do	that	instead.If	you	feel	that	that	is	better.I	don't	know	really.All	right.Then	I'm	going	to	create	something	that's	called	a	provider.The	provider	is	going	to	wrap	our	application	and	make	sure	that	we	provide	this	value	to	our
application	so	we	can	decide	where	we	want	to	wrap	this	provider	in	our	application.In	our	case,	we're	going	to	wrap	it	in	the	app	component	later	so	that	we	can	The	value	to	our	complete	application.So	we	wrap	it	high	up	in	the	hierarchy,	so	that	the	complete	application	and	all	the	components	will	have	access	to	this	value.So	I	created	a	const,	I
call	this	component	use	a	provider,	I	destructure	out	the	children's,	because	we're	going	to	use	this	component	to	wrap	our	application.So	that	means	that	the	children	is	going	to	be	the	app.In	this	case,	I	have	a	fat	arrow.And	then	I'm	going	to	create	a	state	const.State	Set	state	just	as	we	did	before,	I	call	the	use	state	hook.And	I	can	give	it	the	value
of	undefined	as	initial	value.Right,	that's	our	state's	we	creating	this	one	in	the	use	of	provider,	then	we	want	to	provide	this	one	to	our	application.So	I'm	going	to	return	from	the	context	we	created	up	here.context,	that's	a	component,	we	have	something	that's	called	a	provider.So	context	dot	provider,	capital	C,	capital	P,	and	then	we	have	a	prop	is
called	value	and	inside	the	value	prop,	we	can	provide	this	value	that	we	want	our	application	to	have	access	to.So	a	curly	brackets,	and	I	want	to	provide	an	array	with	the	state	and	the	set	state,	that	will	make	sure	that	we	get	the	exact	same	structure	as	we	do	here	with	the	state,	we	have	the	state	itself,	and	then	we	have	the	setter	in	an	array.So
that's	what	I'm	doing	here,	I'm	giving	it	the	exact	same	structured	array.Alright,	so	inside	this	one,	we're	going	to	return	the	children.And	this	makes	sure	that	we	can	use	this	provider	to	wrap	any	component	in	our	react	application,	and	it	will	provide	it	with	these	values.Now	we	have	to	export	default	use	of	provider	like	this,	save	this	file,	we
finished	here.This	is	how	you	set	up	a	global	context	and	a	state	that	you	want	your	application	to	be	able	to	access	globally.Now,	we're	going	to	move	inside	of	the	app.js	file,	and	inside	this	file	up	here	somewhere,	we	can	mark	it	with	context.And	we	import,	use	the	provider.That's	the	one	we	created	from	dot	forward	slash	context.All	right,	so	that's
our	provider	component.And	we	want	to	place	it	high	up	in	the	hierarchy.So	we	can	just	place	it	here	inside	of	the	router.Use	a	provider	like	this.And	we're	gonna	take	this	one	here	and	move	it	down	and	do	some	auto	formatting.So	we're	wrapping	or	complete	application	inside	of	the	use	of	provider.And	this	makes	sure	that	our	complete	application
will	have	access	to	the	state	that	we	created.So	we're	going	to	use	this	one	later.But	first,	we're	going	to	create	a	login	page.So	that's	what	we're	going	to	start	doing	in	the	next	video.We're	going	to	start	creating	our	login	component.And	I	didn't	say	that	I'm	using	the	version	of	the	application	without	TypeScript.So	you	shouldn't	use	the	one	with
TypeScript	use	the	original	one	that	we	finished	before	we	did	anything	with	TypeScript.And	also	before	we	refactor	it	to	classes,	because	I'm	using	the	functional	component	version,	just	to	be	super	clear,	so	that	you	know	what	product	you're	using	for	this	one.Alright,	let's	move	on	inside	of	the	components	folder,	we're	going	to	create	a	new
component	component	that	called	login	dot	j,	s,	capital	L.And	we	import	react.And	we're	also	going	to	need	you	stayed	and	use	context,	that's	the	new	hook	that	we're	going	to	use	to	grab	our	context.I'm	going	to	show	you	that	in	a	second.And	we	import	this	one's	from	react.Then	we're	going	to	import	something	that's	called	use	navigate	from	react
dash,	router	dash	DOM.And	this	one	is	used	if	you	want	to	navigate	programmatically	in	your	application,	then	we're	going	to	need	a	functions	that	I	showed	you	in	the	API	file,	so	import	API	from	dot	dot	forward	slash	API.For	this	one,	we're	going	to	reduce	the	button	component.So	I	marked	it	with	components	import	button	from	dot	forward	slash
bottom.Right.And	then	we're	also	going	to	create	some	styles	for	this	one.So	we	can	actually	do	that	now	and	scaffold	them	out	first.So	we	create	a	new	file	in	the	components	folder	that's	called	login	dot	styles	dot	j	s.We're	going	to	create	the	actual	styles	in	the	next	video.But	for	now,	we	import	styled	from	styled	components.And	we	export	const
wrapper	and	it	equals	A	styled	dot	div	and	double	backticks	save	the	file	Go	back	to	the	long	end	note	as	we	marked	it	with	styles	and	import	refer	from	dot	forward	slash	login	styles,	login	login	dot	stars	like	this,	and	then	we	need	our	context.So	I	marked	it	with	context.And	we	import	context	from	dot	dot	forward	slash	context.And	that's,	of	course,
the	one	that	we	created	before.All	right,	then	we	can	create	our	component	cost	login	equals,	we	don't	have	any	props	for	this	one,	to	make	an	explicit	return,	and	we	have	a	return	statement.And	we	can	create	the	JSX.First,	I'm	just	going	to	export	default	first	also.So	don't	forget	that	one	export	default	login.In	the	return	statement,	we're	first	going
to	return	a	wrapper.And	inside	a	rapper,	I'm	going	to	create	the	label.I'm	going	to	type	in	username	colon,	number	load	at	one,	I	created	an	input	field	input,	the	type	is	going	to	be	text,	the	value	we're	going	to	grab	the	value	later	from	the	state.So	I'm	gonna	just	mark	it	with	state	value	for	now.And	the	name	is	going	to	be	username.The	onchange	is
going	to	be	handled	input.And	that's	the	function	that	we're	going	to	create,	we	can	scaffold	this	one	out	here,	first	const	handle	input	equals	on	our	function,	we're	going	to	take	in	the	event,	I	can	skip	the	parentheses	as	it's	the	only	one	parameter.And	we	just	create	an	empty	function	from	now	like	this.Then	we're	also	going	to	have	a	function	that's
called	handle	Submit.And	we'll	leave	it	empty	for	now	also.Right,	so	let's	continue	here	with	the	input.So	we	can	close	this	one	here,	then	we	create	another	input	field.type	for	this	one	is	going	to	be	password.We	don't	want	to	show	the	characters	that	the	user	type	in	this	one,	because	it's	the	password	input	box	value	is	also	going	to	be	a	state	value
that	we're	going	to	add.The	name	for	this	one	is	password.And	onchange	is	also	going	to	be	handled	input.So	we	have	the	same	function	to	both	of	these	input	fields,	and	we	close	it	here,	then	we're	going	to	have	a	submit	button	and	we	use	a	component,	the	bottom	component,	the	text	is	going	to	be	login.And	also	we	don't	have	to	provide	us	with	a
prop	that's	called	text	and	we	send	in	the	text,	we	could	also	wrap	the	text	with	this	component	if	we	want	to	do	that	instead.And	then	we	grab	the	text	with	the	children	prop.We	have	a	callback.And	that's	going	to	be	the	handle	Smith	for	this	one.Do	some	auto	formatting,	save	it.So	that's	the	basic	structure	of	our	component,	we	want	to	be	able	to
use	this	component	so	we	have	to	create	a	new	route	for	it.And	we	can	do	that	in	the	app.js	file.First	up	here	with	where	we	have	the	components,	we're	going	to	import	login	from	dot	forward	slash	components	forward	slash	login,	they	will	have	the	component	and	then	we	can	create	it	somewhere	here	we	create	a	new	route	with	a	path.This	one	is
going	to	be	shown	when	we	go	to	the	path	login,	the	forward	slash	login	and	the	element	is	going	to	be	our	component.Login.And	then	we	close	the	route	component	and	some	more	formatting,	save	it,	go	back	to	our	application,	make	sure	that	it's	running.I'm	actually	not	running	mine.So	I'm	going	to	type	in	NPM	start.Whoa,	I	heard	it	really	sumed
in	here.And	I'm	going	to	bring	up	the	console	for	later.So	if	we	go	up	here	in	the	route,	and	type	in	forward	slash	login,	you	can	see	that	we	show	our	component	here.So	that	is	working.Great.Go	back	to	the	application	and	the	login	component.We're	going	to	create	a	few	states	for	this	one.So	at	the	top	of	the	login	component,	we	create	a	state	that
we	call	user	name	and	set	the	username,	equals	use	state	are	going	to	create	an	empty	string	as	initial	state	for	this	one,	we	create	another	state,	that's	called	password.And	the	setter	is	called	Set	password	equals	use	state	with	an	empty	string	as	initial	value	also	for	this	one,	something	like	that.And	then	I	also	want	to	notice	state,	that's	called	error
and	set	error.And	we	have	a	use	state	call.And	we	set	it	to	false	initially.So	these	are	the	three	states	that	we	have,	you	could	also	have	won	combined	states	for	input	fields,	if	you	want	to	have	that	is	used	to	create	them	separately	like	this,	then	we're	going	to	grab	our	context,	we're	importing	it	up	here.And	we	can	grab	the	context	with	a	hook	that's
called	use	context.And	our	context	is	going	to	be	the	state	that	we	created.So	we	create	a	new	cost.And	we	can	just	structure	it	out	just	as	before,	we	have	the	state,	the	state	is	actually	going	to	be	the	user.So	we	can	be	more	specific,	we	call	it	the	user	and	the	set	user.And	it	equals,	we	call	the	use	context	hook.And	this	works	as	simple	as	we	just
give	it	the	context.And	this	one	is	going	to	bring	in	the	context	for	us.And	the	user,	we're	not	going	to	use	this	one,	we're	only	going	to	use	the	set	user,	we	can	mark	it	with	an	underscore.If	we	want	to	do	that.This	is	also	very	subjective	on	how	you	like	to	do	stuff	like	this,	then	we	have	a	hook	that	we	will	see	imported	for	our	navigation.So	we	create
a	course	that	we	call	navigate.And	we	call	that	hook	use	navigate.And	this	will	make	it	possible	for	us	to	use	this	navigate	const	to	navigate	programmatically	in	our	application.Alright,	so	first,	we're	going	to	make	these	input	fields	controlled	by	this	component.So	we	have	to	hook	them	up	with	state	just	as	we	did	with	the	search	bar.And	we	have	this
handle	input	here,	where	we	get	the	event	from	the	input	field,	so	the	input	fields,	the	value	for	this	one,	we	can	change	this	one	now.It's	going	to	be	the	state	that's	called	username.No,	not	a	capital	N,	all	lowercase	letters,	and	this	one	is	going	to	have	the	value	from	the	password	state.All	right.So	this	will	make	sure	that	it	is	connected	to	the
state.So	now	when	these	input	fields	change,	we	can	make	that	change	in	the	handle	input	because	we	have	an	on	change	handler	on	them.And	we	can	set	the	different	states	in	the	handle	input.And	you	can	see	here	that	I	give	them	a	name.So	first,	we	want	to	grab	the	name.So	I	create	a	const	name	equals	e	dot	current	target	dot	name,	and	this	one
is	going	to	grab	the	name	that	are	set	here	on	the	name	prop.Then	we	have	another	cost	with	the	value.And	we	get	that	one	from	e	dot	current	target	dot	value.So	we	need	the	name	and	the	value.And	actually,	you	could	do	this	in	a	one	liner.If	we	use	just	one	state	for	our	input	fields,	we	could	set	the	name	of	the	properties	in	an	object	dynamically
with	the	name	that	we	get	from	the	input	field.And	then	we	set	the	value	so	that	will	create	new	values	in	the	object.Depending	on	how	many	input	fields	we	add	to	our	application.But	in	this	case,	I	have	a	separate	state	for	each	input	field.So	I	do	it	like	this	instead,	in	a	small	application	like	this,	I	think	this	is	more	readable,	actually.But	this	means
that	we	have	to	check	now	what	input	box	that	we	type	in.So	we	have	an	if	statement.If	named	equals	username,	then	we're	going	to	set	the	username	stayed	with	the	set	username,	stay	setter,	and	we	have	the	value.So	we	set	the	name	of	the	input	box,	and	then	we	get	the	value.If	the	name	is	username,	we	know	that	we	should	set	the	state	for	the
username.So	that's	what	we	do	in	here.And	if	the	name	equals	password,	we're	going	to	set	the	password	state.And	we	give	this	one	the	value	also.This	one	maybe	should	have	a	lowercase	m	instead	not	an	uppercase,	so	we	change	this	one	just	to	be	consistent.Or	format	it	save	it	and	we	can	see	if	it	works,	go	back	to	the	application.And	we	can	type
something	in	here.And	yeah,	it	works.So	we	know	that	we	have	our	control	components.So	that's	great.So	our	input	fields	are	working,	then	we'll	have	to	submit	something	and	actually	grab	something	from	the	API	to	make	the	login.And	we	do	that	in	the	handle	submit	function.The	first	thing	we're	going	to	do	is	to	set	the	error	to	false	just	when	we
did	when	we	finished	our	movies,	and	then	I	have	a	try	block	and	then	a	catch	block	and	we	have	the	error.For	this	catch.We	can	set	that	or	True.That's	the	only	thing	we're	going	to	do	inside	of	the	catch	block.So	we're	going	to	be	in	the	try	block	now.And	first,	we	need	to	get	the	request	token.So	I	create	a	new	const.I	actually	noticed	now	also	that	I
forgot	to	bump	up	the	font	size.So	I'm	going	to	do	that	now,	from	now	on	is	going	to	be	bigger.Okay,	so	I	have	a	cost	with	a	request	token.We're	going	to	wait	from	the	API,	I	have	this	function	GET	request	token.And	of	course,	this	one	has	to	be	an	async	function,	because	we	are	waiting	here.So	Mark	this	one	with	a	sync.So	that	will	hopefully	get	us
the	request	token,	if	something	goes	wrong	here,	the	catch	block	will	set	the	error	to	true	and	we're	going	to	handle	that	just	in	a	second	down	in	the	JSX.The	cost,	we're	going	to	grab	the	session	ID	We	await	again,	from	the	API,	I	have	a	function	that's	called	authenticate.And	for	this	one,	we're	going	to	give	it	the	request	token	first.And	then	we	give
it	the	username,	and	then	the	password.All	right,	that	will	hopefully	get	us	our	session	ID.And	then	we	can	set	the	user.And	this	one,	the	set	user	is	actually	the	context	that	we	created,	because	we're	grabbing	the	context	here	and	the	setter	for	the	user.So	we're	setting	this	one	in	the	context,	I'm	going	to	set	it	with	an	object	First,	I	want	to	set	the
session	ID.So	I	gave	it	from	the	session	ID	that's	the	one	that	we'll	get	back	from	the	API.We	have	a	property	that's	called	session	underscore	ID,	all	lowercase	letters,	and	then	I'm	going	to	set	the	username.And	as	this	is	also	e6	syntax,	I	don't	have	to	type	out	this	twice,	because	it	will	interpret	this	automatically.Alright,	and	then	we	just	have	one
more	thing	to	do.And	that	is	we	have	to	navigate	somewhere	when	we	successfully	logged	in.So	we	can	navigate	programmatically	with	react	router,	we	use	the	navigate	that	we	got	here	from	that	hook	us	navigate,	we	placed	that	one,	we	placed	what	we	get	back	here	in	the	navigate	cost.So	navigate	parenthesis	and	we	just	specify	the	URL.And	in
this	case,	we	want	to	go	to	the	homepage.So	we	specify	it	like	this.And	I	want	to	do	some	console,	log	in	here,	console	log,	the	session	ID	just	to	see	that	we	get	something	here,	save	the	file,	go	back	to	our	application.And	now	we	haven't	styled	this	one.We're	going	to	do	that	in	the	next	video.But	we	can	use	the	input	fields	here	anyways.So	my	login
is	vevo	and	then	I	have	my	password	that	I'm	not	going	to	tell	you	something	like	this,	and	I	tried	to	log	in.And	you	can	see	that	we	get	this	object	back	from	API,	we	get	the	session	ID	and	the	success	is	telling	us	true.So	that's	really,	really	neat.We	know	that	our	login	system	is	working,	and	it	redirected	us	to	the	homepage.To	go	back	to	the	login
page.I	want	to	do	one	more	thing	here	before	we	finished	with	the	logic	for	this	component.Down	below	here	just	above	the	first	label,	I	have	a	curly	bracket	and	I'm	going	to	create	a	short	circuit,	I'm	going	to	check	if	the	error	is	true.Double	ampersand	If	the	error	is	true,	we're	going	to	have	a	div	with	a	class	name	of	error.And	then	I'm	just	going	to
say	there	was	an	error,	something	like	this.And	then	I	want	to	format	it.And	then	I'm	going	to	say	this	file.So	you	can	of	course	type	in	whatever	you	want	to	save	the	file,	go	back	to	the	application.So	just	try	to	type	something	in	here	and	click	Login.And	you	can	see	that	we	show	this	one	here.Instead,	there	was	an	error.And	we	also	get	an	error	in
our	console.So	we	know	that	the	try	and	catch	block	is	working.So	this	is	our	login	component	and	the	logic	and	in	the	next	video,	we're	going	to	create	the	styles	for	this	component.We	have	our	login	component	and	the	functionality	for	that	one.And	now	we're	going	to	create	the	stars	for	it.So	go	back	inside	of	the	code	editor	and	the	login	dot	styles
dot	j	s	file.We	have	our	wrapper	that's	the	only	style	component	that	we	use	him	for	this	one.First,	we're	going	to	display	it	as	a	flex.we	align	dash	items	to	center	and	we	justify	the	content	Center	also	just	the	center	stuff.Then	we	set	the	flex	direction	on	this	one	is	going	to	be	column	and	we	can	save	it	to	see	what	we've	got	so	far.You	can	see	that
we're	centering	it	here	in	the	middle	of	the	screen.So	that's	great.Go	back	to	the	code,	I'm	going	to	set	a	max	width	to	320	pixels,	the	padding	is	going	to	be	20	pixels.And	the	color	is	going	to	be	from	the	variables,	we	have	a	color	that's	named	dark	gray.So	double	dash	dark	grey.Save	it	go	back	just	to	see	what	we've	got,	right?	We	can	actually	auto
format	it	yet,	because	there's	some	arrows	down	below	here.So	we're	going	to	create	a	random	method.And	then	we're	going	to	move	this	one	this	logic	here,	inside	of	the	random	method,	like	this.And	then	we	have	a	few	things	to	correct	here.So	first,	I	want	to	destructure	out	some	stuff	from	the	state.So	up	here,	as	the	first	line	in	the	render
method,	I	have	a	const.I	destructuring.out	the	search	term	movies,	loading	and	error	equals	this	dot	state.All	right,	so	that	will	fix	a	few	things.Here,	we	have	to	change	stayed,	because	it's	going	to	be	from	the	movies	dot	results.And	I	do	that	on	all	three	of	these	movies.And	instead	of	set	search	term	on	the	search	bar	here	for	that	Prop,	we're	going
to	give	it	this	dot	handle	search.And	here	instead	of	state,	we're	also	going	to	map	through	the	movies	dot	results.Down	below	here,	we	change	state.The	movies	on	this	callback	here	is	going	to	be	this	dot	handle	load	more	instead.And	now	we	can	auto	format	it.And	hopefully	we	won't	have	an	error.But	there's	one	more	thing	that	we	have	to
do.Because	it	won't	fetch	anything	yet.Yeah,	of	course,	I	have	to	have	this	dot	set	state.And	I	haven't	imported	API	either.So	go	back	to	the	US	home	fetch.Grab	this	one	up	here,	copy	and	go	to	the	home.We	can	paste	it	in	here.And	this	will	get	rid	of	all	the	errors,	but	we're	not	actually	fetching	anything.Now,	if	we	save	this	one,	go	back	to	the
application.You	You	can	see	that	it's,	it's	empty	here,	because	we	won't	we	don't	trigger	on	the	thing,	we	need	to	have	a	lifecycle	method	to	trigger	when	this	component	mount.And	we	have	a	lifecycle	method	built	in	for	that.It's	called	component	did	mount.So	we	call	that	one	and	inside,	we're	simply	going	to	invoke	this	dot	fetch	movies.And	we	give
it	a	one,	because	we	want	to	grab	the	first	page	or	format	it	and	save	it,	go	back	to	the	application.And	now	you	can	see	we	have	our	data	and	our	movies	here.And	hopefully,	everything	works	as	it	should.Yeah,	it	works.So	that's	how	you	do	it.And	yet	again,	the	app	will	look	exactly	the	same	here,	we	have	the	same	functionality	in	the	application
itself.But	we	have	refactored	the	homepage,	to	use	the	class	component	instead.And	as	you	can	see,	I	think	there's	a	lot	more	code	here.And	I	think	it's	actually	not	that	easy	to	separate	out	things.So	that's	why	I	prefer	to	use	functional	component	and	the	use	state	hook	can	use	effect	instead.I	don't	really	like	this	way	of	doing	it	anymore,	especially
with	the	state	because	you	have	to	nest	a	lot	of	stuff	here.As	you	only	have	one	state,	it's	much	easier	when	you	can	separate	them	out	into	different	states	as	you	can	with	the	use	state	hook.Alright,	just	one	more	thing	to	do	in	this	section.And	that	is	to	refactor	the	move	a	component	to	use	a	class	component	instead.And	that's	exactly	what	we're
going	to	do	in	the	next	video.We're	almost	finished	with	a	refactoring	into	class	components,	we	only	have	the	movie	page	left	to	do.And	we're	going	to	do	that	right	now.So	go	back	inside	of	the	code	editor	and	the	inside	a	movie.js	file.And	for	this	one,	we're	actually	going	to	do	a	little	special	thing	here.And	that's	because	we	are	using	this	hook	here,
use	params.That's	from	react	router,	version	six.And	there's	actually	no	good	way	of	grabbing	the	params	in	a	class	component	with	react	router,	they	have	completely	removed	that	functionality.And	they	do	not	support	that	for	class	components.That's	why	I'm	going	to	do	a	little	trick	down	below	here	at	the	bottom,	just	above	where	we	export	this
one	here,	we're	going	to	create	the	functional	component	for	this	one	const.movie	with	params,	like	this,	and	then	it's	gonna	take	in	some	props,	we	have	an	arrow	function,	actually	going	to	remove	the	sidebar	again.And	then	we	have	our	movie	component	that	we	have	up	here.So	this	one	is	going	to	spread	all	the	props	that	this	component	receives
that	way,	we	can	have	more	props,	if	we	want	to	do	that.So	we	just	pass	them	along	to	the	movie	component.Then	I'm	going	to	create	a	prop	that's	called	params.And	inside	here,	I	invoke	use	params,	like	this.And	then	instead	of	exporting	the	movie	itself,	I'm	going	to	export	movie	with	params.So	what	I'm	doing	here	is	creating	a	wrapper	component
that	will	show	the	movie	class	component	and	also	provide	it	with	the	params	for	us.So	that's	the	best	way	I	found	of	doing	this	actually,	there	may	be	some	other	solutions	also.But	I	think	this	is	actually	kind	of	neat,	because	you	can	do	it	on	one	roll	like	this,	before	you	have	something	that's	called	with	router	that	you	can	wrap	your	component
with.But	that's	actually	not	provided	in	the	React	router	Dom	or	in	the	React	router	library	anymore.So	that's	why	I	have	to	do	it	like	this.Alright.So	let's	reflect	to	this	one,	we're	going	to	remove	this	hook	here.And	we	can	also	grab	from	the	use	movie	fetch	hooked,	we	can	grab	the	API	import.And	I'm	going	to	paste	that	in	the	movie	up	here
somewhere,	maybe	there.And	we're	not	going	to	use	that	hook	anymore.And	of	course,	we	have	to	rename	this	one	also.And	up	here,	we're	going	to	import	component	just	as	before,	and	we	rename	this	one	we	create	a	class	class	movie	extends	component.This	one,	we	can	remove	that	one	also.And	we	can	actually	create	a	render	method	right	now
and	move	this	logic	inside	of	that	one.Something	like	this.All	right,	now	we	have	some	serious	refactoring	to	do	here.So	first,	we're	going	to	create	our	state.Whoever	class	property	state	it's	an	object	movie.I'm	going	to	set	that	one	to	an	empty	object	to	start	with.Then	we'll	set	Loading	to	true	and	error	to	false,	like	this.All	right,	that	is	the	modal

formatting	there	also,	then	from	the	use	movie	fetch	hook,	I'm	going	to	copy	this	fetch	movie	function	like	this.For	this	one,	I'm	not	going	to	implement	the	session	storage.So	I'm	just	copying	this	one	here.And	I	didn't	do	that	in	the	home	component	either.Right	pasted	in	here	in	the	mover	component,	we	remove	the	const	from	fetch	movie.Let's	just
before	we	have	to	refactor	this	one,	this	one	becomes	this	set	stayed	parenthesis	and	we	have	our	object	error	is	going	to	be	false.And	loading	is	going	to	be	true	like	this.And	then	we	can	also	destructure	out	or	or	Prop,	because	we're	sending	that	in	with	that	special	little	component	that	are	created	down	here.So	now	we	have	access	to	a	prop,	that's
called	params.So	destructor	that	one	out,	because	we're	going	to	need	the	movie	Id	like	this	equals	this	dot	props,	dot	params.And	that	will	grab	that	one	for	us.All	right,	these	ones	are	going	to	be	the	same.This	one	also	set	state	we	have	to	change	this	one,	this	one	also	this	dot	set	state,	and	the	state	is	going	to	be	movie,	we	have	that	property,	it's
an	object.So	we	move	these	ones	up	inside	of	that	object.And	then	we	have	a	coma.And	we	set	the	loading	property	to	false	like	that.That	should	be	if	we're	not	one,	we're	going	to	remove	the	set	loading.And	here,	change	the	set	error	to	this	dot	set	state.parenthesis	and	object	error.True	and	loading	the	false.All	right.And	I	think	that's	it	for	that
function.And	then	we're	going	to	have	a	lifecycle	method	also,	for	this	one,	the	component	did	mount	we're	going	to	do	something	when	the	component	mount,	and	the	only	thing	we're	going	to	do	is	to	invoke	this	dot	fetch	movie.And	then	down	below	in	the	render	function.We	can	destructure	out	from	our	state	const.We	have	our	movie.We	have	the
loading,	we	have	the	error.And	that's	it.Then	we	grab	them	from	this	stuff	stayed.And	hopefully,	it	will	work	here	now.Yeah,	I	think	that's	fine.There's	a	more	formatting.And	let's	see	if	it	works.We	save	the	file,	go	back	to	the	application.is	grabbing	from	the	session	storage?	We	just	released	a	full	React	course	on	the	freeCodeCamp.org	YouTube
channel.Thomas	Weibenfalk	created	this	course.	Then	I	instantly	going	to	set	the	initial	dot	current	to	false.And	you	can	see	here,	I	can	mutate	this	variable	directly,	I	don't	have	to	have	a	setter	for	this	one,	because	this	one	won't	trigger	a	rerender.That's	the	biggest	difference	from	a	state	that	when	you	use	ref,	it	won't	trigger	a	rerender.And	then	if
this	one	is	true,	we	know	that	this	is	the	initial	render,	and	then	I'll	just	return,	we	don't	do	anything	more	inside	of	the	use	effect.And	we	set	it	to	false.So	next	time,	this	one	triggers,	this	one	is	going	to	be	false.And	it's	going	to	run	our	logic.So	this	is	how	you	can	create	a	neat	little	code	snippet	here,	to	skip	the	initial	render	in	the	use	effect,	save
the	file,	just	make	sure	that	it	works.Yeah,	and	it	seems	to	be	working.We've	learned	how	to	create	a	control	component	in	react,	and	the	component	controls	the	input	field	with	the	state.So	the	input	field	always	has	the	same	value	as	the	state	and	that's	the	control	component	or	state	is	synced	with	the	input	field.And	then	we	created	a	timer	that
will	trigger	each	half	a	second	and	call	this	set	search	term	to	set	the	stay	there.And	the	state	is	going	to	be	the	value	from	the	input	field.And	we	also	pass	this	one	along	from	the	US	home	fetch.So	that's	how	you	pass	data	down	to	your	components.That's	what	props	are	for,	you	can	pass	data	down	to	your	component,	and	we	can	use	it	in	that
component.And	that	means	that	we	also	have	this	value	in	our	use	home	fetch	hook	to	use	the	fetch	data	later,	that	can	remove	this	console	log	for	now,	save	the	file,	and	this	will	be	it	actually	for	the	search	bar.In	the	next	video,	we're	going	to	style	the	search	bar.And	then	we're	going	to	create	the	logic	for	fetching	the	data.were	created	our	search
input	field,	but	it	doesn't	look	good.So	we	have	to	style	it	also.And	that's	what	we're	going	to	do	now.So	in	our	search	bar	dot	styles	file,	we're	going	to	create	the	wrapper	first.And	I'm	going	to	display	it	as	a	flex.I'm	going	to	align	items	center.Now	not	aligned	a	line	I	set	the	height	200	pixels.The	background	is	going	to	be	from	the	variables,	we	have
the	dark	gray.And	I'm	going	to	give	it	some	padding	on	the	sides,	zero	and	20	pixels,	do	some	more	formatting,	save	it	go	back	to	the	browser.And	you	can	see	that	we	have	the	search	bar	here.And	now	we	have	to	style	kind	of	the	inner	part	of	the	search	bar.And	we	do	that	in	the	content.Inside	the	content,	I'm	going	to	set	the	position	to	relative
because	we	want	to	place	the	icon	with	an	absolute	position.The	max	width	is	going	to	be	from	the	variables	we	have	our	max	width,	the	width	is	going	to	be	100%.The	height	is	going	to	be	55	pixels,	the	background	is	going	to	be	from	the	variables	met	gray.And	Morgan	is	going	to	be	zero	in	order.And	the	border	dash	radius	is	going	to	be	four	pixels
and	the	color	from	the	variables	we	have	our	white.Save	it	go	back	and	see	what	we've	got	so	far.So	we	have	this	inner	part	now	of	the	of	the	search	bar	to	add	the	style	icon	and	the	search	bar	input	field	itself.So	inside	the	content,	we're	going	to	nest	some	stuff	here	we	have	our	icon	that's	the	IMG	I	set	the	position	to	absolute.And	this	is	why	I	use
relative	appear,	otherwise	it	won't	work.So	it	needs	to	be	relative	to	the	actual	content	div	is	going	to	be	left	15	pixels.So	14	pixels,	and	will	is	going	to	be	30	pixels,	save	it	go	back.And	now	it	seems	to	align	correctly	and	it	also	has	the	correct	size.Great.Then	we	have	the	input	field	itself.So	down	below	the	IMG	type	in	input,	we	set	the	font	size	to	20
pixels	in	this	one	position	is	going	to	be	absolute	left	is	zero,	margin	is	eight	pixels.And	zero	padding	is	going	to	be	000	and	60	pixels.border	is	zero,	the	width	is	going	to	be	95%.The	background	is	going	to	be	transparent.The	height	is	going	to	be	40	pixels.And	the	color	is	from	the	variables	and	is	going	to	be	white.So	go	back	to	the	browser.And	you
can	see	that	it	works	now	but	we	have	this	nasty	little	outline,	you	shouldn't	remove	the	outlines,	actually,	but	in	this	case,	I	think	it's	fair	to	do	it	because	it	doesn't	look	good.So	I'm	going	to	remove	them.So	inside	the	input,	I'm	going	to	nest	focus.And	I'm	going	to	remove	the	outline,	I	set	it	to	none.And	hopefully	that	will	remove	it.Yeah,	you	can	see
it	removed.Now.One	thing	you	can	do	also,	if	you	want	is	to	style	this	for	mobile	devices,	maybe	make	it	a	little	bit	less	insight	in	font	size,	and	stuff	like	that,	if	you	want	to	really	fine	tune	it	here,	but	it	seems	to	be	working	now.All	right,	and	that's	it	for	the	search	bar.That's	the	style	for	the	search	bar.In	the	next	video,	we're	actually	going	to	hook
this	up	to	the	API	and	fetch	some	data.We've	created	our	search	functionality	on	our	search	bar,	but	we	can't	really	search	for	anything.Yep.So	if	we	type	something	in,	we	just	get	this	console	log	here.So	we're	going	to	implement	the	actual	functionality	where	we	fetch	the	search	data	from	the	API.Let's	go	back	inside	of	the	code	editor.And	we're
going	to	be	in	the	use	home	fetch	hooked.And	down	here,	where	we	say	initial	render,	we're	going	to	change	this	one	to	initial	and	search	like	this,	because	we're	going	to	use	this	use	effect	both	for	the	initial	render	and	the	search.And	it's	actually	pretty	easy,	because	now	we	just	have	this	empty	dependency	array,	meaning	that	we	only	trigger	this
use	effect	once	on	Mount.But	we	also	want	to	trigger	this	one	each	time	to	use	the	search	for	something.And	up	here	we	have	our	search	term.And	in	this	one,	we're	going	to	store	what	the	user	typed	in	in	the	search	bar.And	that	means	that	we	want	to	trigger	the	use	effect	when	the	search	term	changes	down	here	in	the	dependency	array,	we
specify	a	search	term,	meaning	that	this	use	effect	will	trigger	each	time	the	search	term	changes,	and	it	will	also	trigger	one	time	on	Mount.So	we	can	actually	use	this	one	for	the	initial	setting	also.Because	when	we	search	for	something,	we	always	want	to	fetch	the	first	page	just	as	we	do	on	the	initial	amount.So	that's	fine,	we're	fetching	the	page
one.But	we	also	want	to	provide	the	search	term.And	that's	also	fine	for	the	initial	fetching,	because	the	search	term	is	going	to	be	an	empty	string.So	we	know	that	we're	fetching	the	most	popular	movies,	because	we're	not	specifying	any	search	term.There's	one	more	thing	though,	that	we	have	to	do,	and	that	is	to	wipe	out	the	old	state	before	we
make	a	new	search,	because	we	want	to	wipe	it	out	and	then	make	a	search,	show	the	loading	spinner	and	then	show	the	new	movies	that	we	grabbed	from	the	search.So	we	can	set	state	to	the	initial	state	here,	and	that	will	wipe	out	the	state.And	that's	really	all	there	is	to	it.So	we	say	this	file,	go	back	to	our	application,	we	try	to	search	for
something.And	you	can	see	that	it	works.Now	this	one	changes	because	this	one	will	always	grab	the	first	element	in	the	array	of	movies.And	that's	fine.Actually,	you	can	have	it	like	this	if	you	want,	but	I	want	to	remove	this	hero	image	when	we're	in	a	search.We	can	do	that	also	to	go	back	to	our	code.And	then	inside	of	the	home.js.Down	below	here
where	we	show	the	hero	image.We	can	also	specify	that	we	don't	want	to	show	this	one	if	we	have	a	search	term,	so	not	search	term,	double	ampersand	so	now	we're	checking	that	we	don't	have	a	search	term	and	also	that	we	actually	have	a	first	element	in	the	array.or	movies.But	you	can	see	that	you	won't	see	her	now.And	that's	because	we	haven't
exported	this	one	from	our	hooked.So	go	back	to	the	hooked.And	down	below	here,	we	can	export	this	one	also	search	term	like	this,	save	the	hook,	go	back	to	the	home	notice,	and	up	here	where	we	destructure	out	everything	from	the	hood,	we	can	also	destructure	out	the	search	term	like	this,	save	the	file,	go	back	to	our	application,	we	tried	to
search	again.And	now	you	can	see	that	it	disappears.This	is	exactly	what	I	want.If	you	want	to	keep	the	hero	image,	you	don't	have	to	do	this.And	then	it	reappears	when	we	don't	have	anything	in	the	search	bar.All	right,	there's	one	small	thing	that	I	also	want	to	do,	and	that	is	in	the	home.js.And	if	we	look	down	below	here,	where	we	have	the	grid,
I'm	going	to	create	a	ternary	operator	now	because	now	it	says	popular	movies,	even	when	we're	in	a	search.So	this	one,	I'm	going	to	create	a	curly	bracket	and	also	curly	bracket	here	at	the	end,	and	then	I	check	if	I	have	a	search	term,	I	have	a	question	mark.And	if	we	have	a	search	term,	I	create	a	string	I	wanted	to	say,	search	result.And	if	we're
not	in	a	search,	it's	gonna	say	popular	movies.So	if	we	have	a	search	term,	it's	gonna	return	what's	the	right	to	the	question	mark,	and	that	search	result.Otherwise,	it's	going	to	return	popular	movies,	save	the	file,	go	back	to	the	application.This	time,	I'm	going	to	search	for	Indiana	Jones.And	now	you	can	see	that	the	header	on	the	grid	changes.So
that's	great.It	says	search	results.And	I	remove	this	and	it	says	popular	movies.So	that's	our	search,	we	have	implemented	all	the	logic	for	the	search	bar.And	in	the	next	video,	we're	going	to	start	trading	the	Load	More	button.Okay,	let's	start	creating	a	button	that	will	go	at	the	bottom	here.And	the	spinner	will	not	show	all	the	time,	it	will	only	show
when	we	loading	stuff	back	in	the	code.And	inside	the	components	create	a	new	folder	that's	called	baronne	capital	V.And	you	guessed	it,	we	create	a	new	file,	let's	call	index	dot	j	s.And	we	create	another	file	that's	called	Baran	dot	styles	dot	j	s.And	we're	going	to	be	in	that	file	and	import	styled	bomb	style	components.And	for	this	one,	we	only	going
to	have	one	style	component.So	we	export	const.And	it's	going	to	be	a	wrapper	equals	a	style	dot	button	in	this	case,	and	double	backticks	Auto	format	it	and	save	it	and	then	we	go	back	to	the	index.js	file.And	we're	going	to	create	a	bottom.So	we	import	react	from	react.Then	we	have	our	styles,	we	import	the	wrapper	that	we	created	wrapper	from
dot	forward	slash	buttons	and	dot	styles.Right,	now	we	have	our	component	const	bottom.Then	I	just	structure	two	props.One	is	called	text	and	one	is	called	callback.And	I	create	an	error	and	I	make	an	implicit	return	on	this	one.I'm	going	to	add	the	rapper	is	going	to	be	type	button.And	it's	going	to	have	an	onClick	handler.And	it's	going	to	be	the
callback	that	was	sent	in	as	a	prop.And	then	I'm	going	to	display	the	text	inside	of	the	bottom.So	this	is	a	button	that	we	created	as	a	start	component	and	call	it	wrapper.And	it's	going	to	trigger	a	callback	function	when	the	user	clicks	on	the	button,	and	then	we	show	the	text	we	can	send	in	what	text	we	want	to	this	button.If	we	want	to	reuse	it,	then
we	export	default,	bottom,	save	it,	then	we	go	back	inside	of	the	home	component.And	at	the	top,	we're	going	to	import	bottom	from	dot	forward	slash	bottom.And	then	at	the	end	over	JSX,	we're	going	to	show	the	bottom.And	we	have	to	think	about	this	because	we	don't	want	to	show	the	bottom	if	we	read	the	last	page	of	movies.So	we	have	to	take
that	one	into	consideration.So	just	below	the	spinner	here,	I'm	going	to	use	the	curly	bracket	and	create	a	JavaScript	expression,	we're	going	to	check	from	the	State	DOT	page.If	that	one	is	less	than	State	DOT	total	underscore	pages,	we	know	that	we're	still	not	on	the	last	page.And	I	have	a	double	ampersand	make	a	short	circuit	here.I	also	want	to
check	so	that	we're	not	loading	anything.So	if	not	loading,	and	then	I	have	another	pair	of	ampersands.And	I	have	a	parenthesis,	put	it	on	a	new	road	just	to	make	it	a	little	bit	more	readable.And	then	I'm	going	to	show	my	bottom.So	the	text	is	going	to	be	load	more.And	for	now	I'm	not	giving	it	the	callback.This	is	it	for	now.So	this	statement	will
check	if	the	page	we're	currently	on	is	less	than	the	total	pages.And	then	we	know	that	we	still	want	to	show	the	Load	More	button.And	it	will	also	check	that	we're	not	loading	anything	because	when	we	loading	something,	we	want	to	show	the	spinner	instead.And	we	have	the	spinner	here.So	we	can	actually	create	another	statement	here,	the
creator	curly	bracket,	and	type	in	loading	and	double	ampersand,	and	we	end	it	with	another	curly	bracket	like	this.So	this	will	show	the	spinner	if	the	loading	is	set	to	true.And	if	it's	set	to	false,	it	will	not	display	the	spinner,	but	then	it	will	display	the	button	instead.If	we	go	back	to	the	application,	we	can	see	the	button	down	below	here	in	the
corner.But	it	doesn't	look	right,	we	have	decided	also	to	look	like	this	here.And	that's	what	we're	going	to	do	in	the	next	video.We	have	our	ugly	little	button	here	down	at	the	corner,	so	it's	time	to	style	it,	go	back	to	the	code,	and	inside	of	button	dot	styles	dot	j	s	file	and	we	have	the	wrapper	here,	we're	going	to	give	it	some	nice	little	style	here,	we
start	by	displaying	it	as	blocked	display	block,	we	set	the	background.For	more	variables,	we	have	the	dark	gray,	we	set	the	width	to	25%.The	min	width	is	going	to	be	200	pixels,	the	height	is	going	to	be	60	pixels.The	border	dash	radius	is	going	to	be	30	pixels.And	the	color	is	from	the	variables	dash	dash	white,	the	border	is	going	to	reset	to	zero,
the	font	size	is	going	to	be	from	the	variables	font	big	Morgan	is	going	to	be	20	pixels	and	auto	transition	is	going	to	be	all	0.3	seconds.I'm	lazy	here	I	can	set	it	just	the	property	data	wants	to	have	a	transition,	but	I	said	it	all	outline	is	going	to	be	none.And	the	cursor	is	going	to	be	pointer,	then	I	want	a	little	hover	effect	all	sorts	of	over	a	set	of	pacity
to	0.8.That's	why	I	had	this	transition	here.Also,	I	just	want	to	check	also,	the	font	sizes	here.Font	big.Maybe	we	can	use	this	one	instead	on	the	styles	for	the	search	bar	because	I	think	I	have.Yeah,	I	have	the	font	size,	or	20	pixels,	we	can	use	the	variable	instead	variable	on	big	and	see	how	it	looks.Yeah,	I	think	that	looks	nice.Actually,	we	can	use
that	one	instead.But	let's	check	out	the	button.Yeah,	you	can	see	that	it	works.It	looks	great.Now,	we	only	have	to	create	a	logic	footer	button	now	when	so	that	we	actually	can	load	more	movies.So	that's	what	we're	going	to	do	in	the	next	video.This	is	actually	the	last	video	for	the	homepage.So	we're	going	to	create	the	fetching	logic	for	loading
more	movies.And	we're	going	to	start	in	the	US	home	fetch	hook	that	we	have	in	our	hooks	folder.And	we're	going	to	start	by	creating	a	new	state.So	this	is	going	to	work	in	a	way	that	we	have	a	state	with	a	kind	of	a	flag	that	was	set	to	true	or	false.And	we	set	that	one	to	true	when	we	click	on	a	button.And	then	we're	going	to	trigger	reuse
effect.Because	as	I	said	before,	I	think	this	is	great	practice	with	the	use	effect	hook	and	also	the	state	hooks.So	you	could	do	this	in	other	ways	also.But	this	is	a	quite	neat	way	of	doing	it	we	have	this	state	that	was	set	to	true	or	false.And	when	it	changes,	we	trigger	that	use	effect.And	then	we	can	trigger	to	load	more	movies,	we	first	create	the
state	const	is	loading	more	camel	casing	as	always.And	then	we	have	the	setters	set	is	loading	more,	it's	going	to	equal	and	we	call	the	use	state	hook	we	set	it	to	false	initially.And	this	one	is	going	to	be	triggered	from	the	button	itself.So	we	have	to	export	it	down	here	also.So	after	the	set	search	term,	we	can	export	set	is	loading	more.So	there	you
have	it,	I	removed	the	sidebar,	so	we	can	see	the	complete	row	here.Now	we're	exporting	six	of	those.So	that's	our	state.So	we	can	go	back	to	the	home.js	file.And	here	we	have	our	button	but	we	first	need	to	destructure	out	the	set	is	loading	more	set	is	loading	more.There's	some	auto	formatting,	and	it	will	clean	it	up	for	us	a	little	bit.So	we	just
structure	that	one	also.And	that	means	that	we	can	use	it	in	this	component.And	one	thing	that	we	also	didn't	do	is	to	actually	check	if	we	have	an	error	so	we	can	do	that	before	the	return	statement	here.If	error	We	can	return	a	div	that	says	something	went	wrong.Like	that.And	that	will	make	sure	that	if	we	get	too	narrow,	we	won't	display
everything	here,	we	will	display	this	error	message	instead	of.So	you	can	create	a	more	sophisticated	stuff	here,	if	you	want	to	do	that.In	our	case,	I	think	it's	enough	for	this	course.Alright,	so	let's	move	on	to	this	set	is	loading	more.So	we	have	our	button	down	below	here.And	we	already	created	a	callback	prop.So	we	give	it	the	callback	prop	curly
brackets,	and	this	one	is	going	to	have	an	inline	arrow	function.Because	I	want	to	call	this	one	with	an	argument	set	is	loading	more.Yeah,	I'm	going	to	remove	the	sidebar	set	is	loading	more,	and	we're	going	to	set	it	to	true	like	this.So	this	will	change	this	state	when	we	click	the	bottom.And	if	we	check	out	the	application,	we	won't	actually	be	able	to
see	anything.Now,	you	can	see	that	it	renders	when	we	click	the	bottom	because	it	costs	logs	this	out,	so	we	know	that	it's	working.And	one	great	thing	to	know	that	is	that	if	I	click	a	few	more	times	here,	you	can	see	that	it	don't	rerender	anymore.And	that	is	because	we're	giving	it	the	same	value.So	react	won't	update	the	state	if	it	gets	the	same
value.So	it's	good	to	know	that	with	react,	if	you	give	it	the	same	state	value,	it	won't	rerender	it.So	react	is	kind	of	smart,	it	already	knows	that	it	has	the	same	value.So	it	won't	do	anything,	a	quick	little	pro	tip	in	react.Alright,	so	we	know	that	the	button	is	working.So	we	move	back	to	the	use	home	fetch	hook.And	we're	going	to	create	another	use
effect	down	here.below	the	search	use	effect,	I'm	going	to	mark	it	with	load	more.So	just	as	before	I	create	another	use	effect,	an	inline	arrow	function,	and	we	have	the	dependency	array.And	we	want	this	to	trigger	when	the	is	load	more	is	changing.So	it's	load	loading	more	like	this.And	the	thing	is	that	we	only	want	this	use	effect	to	trigger	when
we	actually	is	loading	more.So	if	not,	is	loading	more	if	this	one	is	false,	we're	just	going	to	return	we	don't	want	to	do	anything	else	in	this	use	effect.This	one	should	only	do	something	when	we	load	more	movies.And	what	we	want	to	do	now	is	to	call	or	fetch	movies	function	again.In	this	time,	we	want	to	give	it	a	State	DOT	page,	plus	one	because
we	want	to	load	the	next	page.And	we	also	give	it	a	search	term	if	we're	in	a	search.And	now	you	can	see	that	it	was	associated	because	it	wants	a	few	other	dependencies,	it	tells	us	that	we	need	to	specify	the	search	term	and	the	State	DOT	page.That's	what	we're	going	to	do	the	search	term	and	the	State	DOT	page.And	now	it	will	be	happy	at
us.And	that	is	because	these	ones	are	outside	of	the	use	effect.So	we	should	always	specify	dependencies	in	the	dependency	array.And	we	should	handle	them	inside	of	the	use	effect	hook.If	there's	something	we	don't	want	to	do	when	something	change,	we	should	account	for	that	inside	of	this	use	effect.So	we	fetching	movies,	and	then	we	set	is
loading	more	to	false.Do	some	more	formatting	and	save	it.And	hopefully	this	should	work.So	we	have	the	use	effect	of	triggers.When	we	change	the	is	loading	more	Boolean.If	we're	not	loading	more,	we	will	just	return	we	don't	do	anything	else	in	this	effect.Otherwise,	we	call	the	fetch	movies	function.And	we	give	it	the	next	page	that	we	want	to
fetch.And	we	also	give	it	a	search	term.And	then	we	set	it	slowly	more	to	force	again	so	that	we	go	back	to	what	it	was	before.And	then	we	can	do	it	all	over	again,	if	we	want	to	click	the	Load	More	button	again,	save	it	and	go	back	to	the	browser	and	see	if	this	works.We	click	the	load	more.And	as	you	can	see,	it	works.And	I	love	when	stuff	just
works.And	you	can	see	that	our	loading	spinner	is	showing	showing	up	also.It's	fast,	so	we	can't	hardly	see	it,	but	it's	there.So	it's	working.And	we	can	also	see	in	the	console,	here	we	are	at	page	11.And	we	have	220	results	now.So	that's	great.We	know	that	load	more	is	working.We	can	also	try	it	out	so	that	it	works	when	we	search	for
something.And	it	does.So	that's	sweet.I'm	happy	with	this.Hope	you	like	it	too.You	can	see	also	those	those	images,	some	of	them	has	some	strange	proportions.So	if	you	want	you	can	tweak	the	CSS	to	take	that	into	account	also.In	the	next	video,	we're	going	to	start	creating	our	routes	for	application.We're	going	to	start	creating	the	routing	for	our
application.And	before	we	do	that,	I	just	want	to	talk	shortly	about	react	router.Especially	the	version	six	that	we're	using.It's	not	officially	released	when	I	record	this	tutorial.So	hopefully	it	released	now,	when	you	watch	this	tutorial,	because	it	is,	as	they	say,	here,	it's	around	the	corner.And	I	actually	talked	to	this	guy,	Michael	Jackson	here	on
Twitter.And	he	said	that	I	should	use	this	version	in	my	course,	because	it's	that	stable	now,	and	it's	not	going	to	change	that	much.And	we're	not	going	to	use	all	the	advanced	functionality	in	the	router	itself.So	that's	why	we	installed	the	next	version	of	react	router	when	we	install	the	dependencies	for	this	application.And	there	are	a	few	changes	in
it	if	you	compare	it	to	version	five.And	I	actually	don't	want	to	talk	about	version	five,	because	that	will	soon	be	deprecated.So	just	wanted	to	mention	why	I	chose	to	use	the	version	six	of	the	React	router,	because	this	is	the	future	version.And	it	has	the	API	that	is	going	to	be	used	for	a	long	time,	hopefully,	in	the	future.So	that's	why	I	use	it.In	this
tutorial,	I	want	to	make	sure	that	this	tutorial	uses	the	latest	stuff,	so	that	you	know	that	you're	up	to	date	on	the	things	that	you	learn.So	that's	why	so	just	a	few	words,	words	here	you	can	compare,	for	example,	they	brag	here	with	a	react	router,	version	five,	that	the	bundle	size	is	20.4	kilobytes	minified.And	the	version	six	is	only	going	to	be	8.5
kilobytes	minified.So	if	you	care	a	lot	about	size	on	your	packages,	this	one	is	drastically	smaller	than	the	version	five.And	then	they	also	show	you	some	stuff	here	on	how	you	use	the	router.But	that's	what	I'm	going	to	show	you	in	the	next	video.But	if	you	want	to	read	more	about	this	one	here,	you	can	go	to	react	training.com	forward	slash	blog
forward	slash	react	dash	router	dash	version	six	dash	pri,	forward	slash.And	then	you	can	read	more	about	it	or	just	google	react	router	version	six,	and	you	will	probably	find	a	lot	of	information	about	it	if	you	want	to	read	more	about	it.So	let's	get	started.We're	going	to	create	the	routing	in	the	next	video.We're	finished	the	home	page	and	we	have
our	application	here.And	we	have	this	nice	little	grid	with	all	the	movies,	but	we	can't	actually	click	on	them	to	view	a	movie.And	we	can't	click	on	the	logo	up	here.So	we	have	to	fix	that.And	we're	going	to	do	that	by	creating	some	routes	for	our	application.So	the	first	thing	we're	going	to	do	is	if	we	go	back	to	the	code,	we're	going	to	create	two	more
components	inside	a	components	folder,	we're	going	to	create	a	new	file	that	called	not	found	dot	j	s,	and	also	not	a	file	that's	called	movie	dot	j	s,	capital	M	on	movie	and	capital	and	capital	F	are	not	found.So	we're	just	going	to	scaffold	This	one's	out.So	we	have	something	to	route	to.If	we're	in	the	movie.js	file,	we	import	react	from	react,	then	I
create	a	component	are	called	movie	that	is	going	to	be	an	arrow	function.And	I'm	just	going	to	return	a	div	that	says	movie.And	now	export	default	movie,	do	some	more	formatting	and	save	it	always	save	your	files.Alright,	then	I	copy	this	one.And	I	go	inside	of	the	notfound	file	that	we	just	created.I	paste	it	in	and	I	change	this	one,	I'm	going	to
share	them	in	one	go	not	found	like	this	and	save	it.And	there	you	have	it	we	have	two	components	to	play	with.And	this	one,	the	movie	dot	j	s	is	going	to	be	the	individual	movie	component	for	showing	the	movie.So	we're	going	to	be	working	a	lot	in	this	component	later.This	one	is	going	to	be	a	series	I'm	not	going	to	create	a	fancy	and	not	found
component.So	you	can	do	some	stuff	on	your	own	in	this	one	if	you	want	to	do	that.So	we	scaffold	out	two	components.And	then	we	can	move	inside	the	app.js	file	that	you	find	in	the	src	folder	not	in	the	components	folder.So	app.js.And	the	first	thing	we	have	to	do	is	to	actually	import	all	the	components	we	need	from	the	router	library	from	react
router.We	can	mark	it	here	with	routing.If	we	want	to	do	that.Then	we	import	we	have	curly	brackets,	we're	going	to	import	something	that's	called	browser	router,	capital	D	capital	R.And	this	name	is	a	little	bit	long.So	if	you	want	to	rename	this	module,	you	can	do	that	by	typing	s	and	router.So	we	import	it	as	router.I	think	I'm	going	to	remove	this
sidebar	also.Alright,	so	that's	the	first	one	we	import	browser	router,	but	we	import	it	as	router	so	we	can	use	it	with	the	name	router	instead.Then	we	import	another	component	that's	called	routes.And	then	we	import	another	component	that's	called	route	very	similar	names	here.So	be	careful	when	you	import	these	ones.And	we	import	them	from
something	that's	called	react	dash	router.So	be	very	careful	here.We're	not	importing	it	from	just	react	dash	router.We	Pulling	it	from	react	router	DOM.So	this	one	is	using	react	router	in	the	background.But	this	one	is	specifically	created	for	using	in	the	dome.Alright,	so	that's	all	the	inputs	that	we're	going	to	do.So	let's	create	our	components	down
below	here.And	I'm	actually	going	to	change	this	one	to	an	implicit	return.So	I	delete	the	return	and	the	curly	bracket.And	I	want	to	create	an	arrow	function	instead	const	f	equals	because	it's	only	with	arrow	functions,	you	can	do	an	implicit	return	and	I	remove	the	curly	bracket	there,	do	some	auto	formatting,	to	me,	it	looks	a	little	bit	cleaner.And
this	div	is	going	to	be	replaced	this	wrapper	div	that	has	a	class	name	of	app	going	to	be	replaced	with	a	router	to	so	we	wrap	our	complete	application	with	the	router.So	it's	really	important	where	you	want	to	put	the	routes,	you	should	wrap	it	with	the	router.And	that	is	the	browser	router	that	we	imported	here,	but	we	renamed	it	to	router.So	that's
why	I	use	it	as	router	here.Then	the	header	is	going	to	be	shown	on	both	the	home	page	and	the	individual	movie	page.So	the	header	is	going	to	be	left	out	of	the	routes.So	I'll	leave	that	one	here.And	then	I	use	the	route	component.And	inside	of	the	routes	component,	we	can	create	our	routes.And	the	first	route,	we're	going	to	use	the	component
that's	called	route.So	we	have	three	different	components	here	from	the	router	library	router,	we're	going	to	wrap	our	complete	application	in	this	case,	and	then	we	have	routes,	that's	going	to	wrap	a	route	because	you	can	route	in	different	components	if	you	want	to	do	that.So	let's	say	that	you	have	a	component	deep	down	in	your	app	tree,	and
then	you	want	to	create	some	routes	for	just	that	component,	you	can	wrap	them	in	this	route	component,	and	then	you	create	the	routes.So	you	don't	need	to	have	them	here	in	the	top	of	your	application.And	then	you	use	the	route	component	to	actually	create	your	route.And	this	route	component	has	a	prop	that's	called	path.So	we	can	specify	the
path	where	we	want	to	show	a	specific	component.And	in	this	case,	it's	a	forward	slash	because	it's	the	homepage.And	then	we	have	another	prop	that's	called	element	is	going	to	equal	and	here	we	can	give	it	a	component.And	we	want	to	give	it	the	home	component	like	this.And	then	we	also	have	to	self	close	the	route	component.That	means	that
we	can	remove	this	home	component	here.So	that's	the	first	wrote,	if	we	want,	we	can	save	this	to	see	that	it	still	works,	go	back	to	the	application,	reload	it,	and	you	can	see	that	it	works.So	that's	nice,	then	we're	going	to	create	another	route.So	we	use	the	route	component	again,	we	set	the	path,	and	this	one	is	going	to	be	forward	slash.And	then
we're	going	to	do	something	special	here	because	when	we're	going	to	fetch	an	individual	movie,	we	need	the	movie	ID	and	we	can	send	a	long	route	params	for	that.And	we	create	a	route	params	for	the	route	by	specifying	a	colon,	and	then	we	name	it.So	movie	ID.So	this	means	when	we	create	a	link	on	the	thumbnails	that	we're	going	to	do	soon,
we	can	send	along	the	ID	for	the	movie.And	that	ID,	we	can	grab	that	in	our	movie	component	and	grab	data	from	the	API.And	you	can	name	this	to	whatever	you	want.Because	this	is	a	rod	puram	that	you	decide	what	you	want	it	to	be	named.So	I	want	it	to	be	named	movie	ID.And	then	we	specify	the	element	on	this	one.And	we	give	it	the	movie
component.And	we	also	close	the	route	component.We	haven't	actually	import	the	movie	components,	we	can	do	that.Import	movie	from	dot	forward	slash,	components.Movie.And	then	we	can	also	import	not	found	from	dot	forward	slash	components	and	not	found.There	you	have	it.So	that's	the	route	for	the	individual	movie,	we	save	it.And	we	can't
actually	click	on	the	thumbnail	now	because	we	haven't	created	that	one.But	what	we	can	do	is	go	up	here,	create	a	forward	slash,	and	then	we	type	in	some	ID.And	you	can	see	that	it	types	out	movie	here	now.And	that	is	because	it's	showing	the	movie	component	so	we	know	that	it's	working.That's	sweet.And	then	if	we	remove	this	one,	we'll	show
the	homepage	instead.Alright,	we're	going	to	create	one	last	route.And	that	is	for	our	not	found	component.So	we	create	a	route	with	a	path	of	forward	slash	and	an	asterisk.And	this	will	make	sure	that	we	show	the	not	found	component	on	any	other	route	that	don't	exist.And	we	set	the	element	to	the	not	found	component.And	we	also	surf	close	this
route,	save	it	go	back	to	the	application.We	know	that	it	works	if	we	specify	an	id	like	this,	it	shows	the	movie	component	But	what	happens	if	we	create	Another	route	here	like	this,	yeah,	then	I	chose	to	not	found.And	that's	super	sweet	because	then	we	have	a	fallback	component	if	the	user	tries	to	go	somewhere	else	in	our	application.So	that's	the
route	set	up	in	our	app.js	file.Then	if	we	move	inside	of	our	header	component,	and	the	index.js	file,	we're	going	to	create	a	link	on	the	logo.Up	here,	we	have	to	import	curly	brackets,	and	the	component	is	called	link	from	react	dash	router	dash	DOM.And	this	is	actually	quite	simple.It	works	the	similar	way	as	the	a	tag	does	in	HTML.So	we	have	a
link	component	we	specified	to	and	in	this	case,	it's	going	to	lead	to	the	home	page,	so	we	have	a	forward	slash.And	inside	the	link	component,	we	just	put	our	logo	like	this.So	we	wrap	it	inside	of	the	link	component.And	this	will	make	sure	that	we	can	link	to	the	homepage,	so	go	back	to	the	browser.For	now,	we	specify	an	ID.So	we're	in	the	movie
component,	and	then	we	click	on	this	logo.And	we	go	back	to	the	home	page.So	really	easy	to	make	links	with	react	router.You	can	also	make	them	programmatically.But	we're	not	going	to	do	that	in	this	course,	because	it's	kind	of	a	little	bit	more	advanced.And	we	don't	really	need	it	in	this	application.But	we	have	to	add	a	link	to	the	thumbnail
also.So	that	we	know	that	we	can	click	on	a	thumbnail,	and	that	will	lead	to	a	specific	movie.So	inside	the	thumb	component,	the	index.js	file	will	do	the	same	thing	up	here	we	import	curly	brackets	link	from	react	dash	router	dash	dome.And	we	have	this	prop	here	that's	called	clickable	because	we	are	going	to	use	this	thumbnail	for	the	movie	poster
on	each	individual	page	also.And	that	means	that	we	won't	be	able	to	click	that	one.So	we	have	to	have	this	Boolean	to	check	if	we	should	be	able	to	click	the	thumbnail	or	not.And	the	way	I	solve	this	is	to	create	a	ternary	operators.So	here	just	below	the	div	we	check	if	clickable	is	true.It's	enough	to	type	in	clickable,	then	we	have	the	question
mark.And	I	have	parenthesis.And	I'm	going	to	use	my	link	component	and	it's	going	to	link	to	and	in	this	case,	we	want	to	use	the	movie	ID	because	as	I	talked	about	before,	we	are	going	to	send	along	this	ID	in	the	route.And	we	can	grab	it	later	in	the	movie	ID	params	that	we	create	here.So	we	have	backticks.I	create	a	template	literal	here.So	I	have
forward	slash,	then	I	have	dollar	sign	curly	brackets,	and	I'm	going	to	give	it	the	movie	ID	and	this	will	give	it	a	link	with	a	forward	slash	and	the	movie	ID	close	the	link	component.And	then	we	have	our	image.And	in	this	case,	I'm	going	to	copy	this	one	and	paste	it	in.So	this	is	if	the	thumbnail	should	be	clickable,	then	in	the	ternary	operator	Be	very
careful	here	it	should	be	after	this	parenthesis,	I	create	a	colon	and	then	I	create	a	new	pair	of	parenthesis.And	I	move	this	image	inside	of	that	one.And	I	also	have	to	end	the	ternary	operator	with	a	curly	bracket.And	then	I	do	some	auto	formatting.So	what	did	I	do	here?	Yeah,	it	was,	it	didn't	have	any	budget.Right.So	in	the	next	video,	we're	going	to
start	it.Alright,	we're	going	to	create	the	styles	for	the	movie.And	for	Boris,	make	sure	that	you	insert	a	movie	in	FUBAR	dot	stars	file.And	we	start	as	always	with	wrapper,	we	display	it	as	flex,	align	the	items.To	center,	I'm	going	to	set	a	min	height	on	this	one	200	pixels.And	the	background	is	going	to	be	from	the	variables	and	I'm	going	to	grab	the
dark	gray.I	set	the	padding	to	zero	and	20	pixels.Save	it	go	back	and	see	what	we	got	so	far.Yeah,	we	can	see	it	down	here.So	go	back	to	the	code,	then	we're	going	to	start	the	content,	we	display	it	as	a	flex.I	set	the	max	win	over	variable	from	the	variable	max	width.I	set	the	width	to	100%.And	the	Morgan	is	going	to	be	CRN	auto.Then,	we	have	that
class	that's	called	column.So	dot	column.That's	the	one	if	you	remember	that	we	have	here	the	class	name	column.And	I	also	got	to	display	that	one	as	a	flex	flex	box	is	a	really	handy	tool	in	CSS	a	line	items	is	going	to	be	Sunder	and	justify	content	is	going	to	be	Sunder	assess	the	background,	from	our	variable	are	going	to	grab	med	grade,	a	set	of
border	dash	radius	to	20	pixels,	the	margin	is	going	to	be	zero	20	pixels,	and	the	flex	is	going	to	be	set	to	one.Then	I'm	going	to	style	the	first	child	we	have	we	have	three	of	them.So	I	want	to	start	the	first	shot	a	little	bit	differently.I	want	to	set	the	Morgan	dash	left	to	zero.And	I	also	want	to	start	the	last	child	with	colon	last	dash	child	I	set	the
Morgan	dash	right	to	zero.Right.Now	we	just	have	a	media	query	left	at	the	bottom	here	at	media	screen	and	Max	dash	with	several	168	pixels	are	displayed	as	a	block	below	that	pixel	size.And	the	column	dot	column	is	going	to	have	a	margin	of	20	pixels	and	zero,	right?	Save	it	go	back	to	the	application.Yeah.So	there's	something	here	that	doesn't
look	right.And	I	think	I	know	what	it	is.Yeah,	this	one	is	called	directors.And	probably,	I	misspelled	this	one	yet	rating	directors,	we	should	have	an	S	zeroes	on	that	class,	make	sure	that	you	add	an	s	and	save	it.Go	back	to	the	application.And	now	it	should	look	right.Yeah,	it	does,	we	can	see	if	it	looks	great	on	another	movie,	also,	and	it
does.Sweet.So	that's	the	movie	info	component.In	the	next	video,	we're	going	to	check	out	this	little	movie	info	bar	that's	below	here	we	can	see	the	running	time	to	budget	and	the	revenue.Let's	create	the	movie	infobar.And	that's	the	one	here	with	running	time,	budget	and	revenue.We're	going	to	start	as	always	by	creating	the	component	first	and
then	we	create	the	styles	in	the	next	video.So	we	start	off	in	the	components	folder	by	creating	a	new	folder	that	we	call	movie	infobar,	capital	M,	capital	I	capital	D.And	inside	of	that	folder,	we're	going	to	create	a	new	file	that's	called	index	dot	j	s.And	then	we're	going	to	create	another	file	that's	called	boring	stuff.No,	I'm	just	kidding.Of	course
not.But	it's	getting	a	little	bit	repetitive	here,	it's	going	to	be	called	movie	in	full	bore.styles.js.Of	course,	we	start	off	by	scaffolding	out	those	components,	import	styled,	ROM	styled	components.And	we	export	constant,	we	have	our	wrapper,	style	dot	div,	double	backticks.And	then	we're	going	to	have	our	content	export	cones	content	equals	stand,
dot	div,	and	double	backticks.Save	the	file	and	go	back	to	the	index.js	file,	we	import	react	from	react.And	then	we're	going	to	use	some	helper	functions	that	are	provided	for	us,	they	will	take	a	look	in	the	helpers.js	file,	you	can	see	that	I	have	one	function	for	calculating	time,	and	one	for	converting	the	money.So	this	one	for	example,	the	Convert
money,	JavaScript	has	something	built	in	that	we	can	use	for	converting	into	a	currency.And	this	one	I	said	is	one	for	converting	it	into	US	dollars,	you	can	change	this	one	if	you	want	to	have	another	currency.And	this	one	is	going	to	give	us	the	time	in	hours	and	minutes.So	these	are	the	ones	that	we're	going	to	import	in	the	component.So	move	back
to	the	index.js	file.And	I	mark	it	with	helpers.Import	calc,	time,	camel	casing	and	convert	money	also	camel	casing	wrong.dot	dot	forward	slash	and	dot	dot	forward	slash	again,	help	us	right,	then	we	have	our	styles.So	we	import	curly	brackets	and	wrapper	and	content.From	dot	forward	slash	movie	and	FUBAR	stars,	all	right.And	then	we	can	create
our	component.So	we	have	our	concept	of	movie	info	bar	equals,	this	one	is	going	to	get	some	props.So	I	destructure	the	time,	the	budget	and	the	revenue.And	I	have	an	arrow	function	and	I	make	an	implicit	return.And	I	think	I'm	also	going	to	export	default,	before	we	start	creating	our	JSX.So	export	default	movie	info	bar.All	right,	we	start	off	with
our	wrapper.Now	we	have	our	content.And	the	first	div	we're	going	to	have	is	a	deal	if	we	have	a	class	name	or	column	on	that	one.So	we	have	a	p	tag,	a	running	time	colon,	then	I	have	a	curly	bracket,	and	we	invoke	the	function	that's	called	calc	time	that	we	import	it.And	we	give	it	the	value	of	time,	and	we	end	it	with	a	curly	bracket.So	that	would
give	us	the	correct	time.And	actually,	the	other	two	days	are	going	to	look	almost	exactly	the	same.So	I'm	going	to	copy	this	one	and	paste	them	in	two	more	times.The	class	name	is	going	to	be	column	also	on	this	ones,	but	this	one	we	can	change	it	to	budget.And	instead	of	chart	time,	we're	going	to	invoke	convert	money	instead	and	we're	going	to
give	it	budget.Now	the	last	one	is	going	to	be	revenue.And	we	also	invoke	convert	money	and	give	it	the	revenue.Right?	Save	it.And	this	is	our	movie	in	football,	we	just	need	to	make	sure	that	we	use	it	in	the	movie	component.So	move	back	to	the	movie.js	imported	up	here,	import	movie	info	bar	from	dot	forward	slash,	movie	info	bar.And	then	below
just	below	the	movie	info.We	use	that	component	movie	info	bar.And	we	also	have	to	give	it	some	props	time	is	going	to	equal	movie	dot	runtime	budget	is	going	to	equal	movie	budget.And	the	revenue	is	going	to	be	the	movie	dot	revenue.And	then	we	close	the	component	like	this,	do	some	more	formatting,	and	we	get	him	on	each	row.So	that's	much
nicer.We	can	see	it	here	now.So	we	have	these	props	here.Now.This	should	be	it	for	a	movie	and	FUBAR.If	we	save	this	one,	go	back	to	the	browser.And	nothing	shows.And	that's	because	we	haven't	styled	it	yet.I	thought	we	should	see	something	at	least.But	I	guess	it's	because	the	Yeah,	the	text	is	white	now.So	that's	why	so	you	can	see	down	here
that	we	have	the	running	time	we	had	the	budget.But	the	budget	is	actually	Ciro	that's	no	good.Or	is	it	zeroed	out	on	that	particular	movie?	Well,	this	has	implicitly	an	Annie	type.But	if	we	go	back	to	the	home,	and	see	where	we	have	the	search	bar,	you	can	see	here,	and	here,	we	actually	get	that	type.So	when	you	hover	over	stuff,	we	get	the
type.And	that's	really	good,	because	we	can	actually	just	copy	this	one,	copy	and	move	back	to	the	index	dot	TSX	file	in	the	search	bar.And	then	we	paste	it	in	here.So	this	is	the	React	dot	dispatch.And	inside	here	where	the	React	dot	set	state	actions,	so	this	is	the	type	for	the	setter	for	the	use	state.And	it's	a	string	in	this	case,	if	it	was	a	Boolean,	it
would	have	said	Boolean	here	instead	of	something.First,	we	have	a	react	dot	dispatch.And	we	specify	the	type	that	is,	is	that	it	is	a	state	action.And	we	specify	that	one	that	it's	a	string	that	we're	going	to	set	this	state	with.So	the	search	bar	is	going	to	be	a	react.fc	component,	we	have	the	angle	brackets,	and	we	give	it	the	props.And	that's	it	for	the
search	bar,	move	on	to	the	spinner,	spinner	Stiles	is	going	to	be	renamed.ts.And	the	index	is	going	to	be	renamed	to	dot	TSX.The	Spinner	we	don't	have	any	props	for	that	one.And	this	one	is	actually	nothing	to	do	because	it	just	exports	the	star	component.And	the	last	one	is	going	to	be	the	thumb.So	we	renamed	the	index	to	dot	TSX.And	the	thumb
styles	is	going	to	be.ts.So	nothing	to	do	with	the	styles	but	in	the	index	dot	TSX	remove	the	prop	types	like	this.And	then	we	specify	types,	type	props,	equals,	the	image	is	going	to	be	a	string	because	it's	the	URL	to	the	image,	then	we	have	the	movie	ID,	that	one	is	going	to	be	a	number	and	the	clickable	is	going	to	be	a	Boolean.And	then	specify	this
as	react.fc.And	we	give	it	the	props.And	this	should	be	it	save	the	component.And	I	think	we	should	be	able	to	start	up	our	application.So	we	run	NPM	start.Let's	see	if	we	have	any	errors.It	actually	seems	to	be	working.Alright,	that's	great.I	didn't	have	any	typos	or	stuff	like	that.That	always	makes	me	happy	when	it	works	the	first	time.Okay,	so	that's
the	home	component.In	the	next	video,	we're	going	to	convert	the	movie	page	and	all	the	components	for	that	page	into	TypeScript.So	we're	going	to	refactor	to	move	a	component	and	also	actually	the	not	found	component.So	we're	going	to	start	with	a	not	found	this	one	is	a	small	component,	so	we	just	specify	this	as	a	react	of	FC.And	that	will	be
that	one.And	we	also	have	to	rename	it	to	dot	TSX.And	save	the	file.And	now	if	we	look	in	the	console,	you	can	see	that	it	gives	an	error,	that's	because	we	renamed	that	one.And	that's	what	I	meant	before	break	it,	and	you	have	to	restore	it,	otherwise,	it	won't	work	usually.Okay,	so	let's	move	inside	of	the	movie.js	file,	rename	it	to	move	it	off	TSX.And
then	we're	going	to	refactor	some	stuff	here.So	we	specify	it	as	react.fc.We	don't	have	any	props	for	this	one.And	you	can	see	that	it	complains	now	because	it	can't	interpret	the	types	here.So	we're	going	to	fix	that	in	the	hook.So	go	inside	the	hooks	and	use	movie	fetch,	we	renamed	this	one	to.ts.And	we	also	need	to	import	some	stuff	here,	we	need
the	movie	type	object,	we	need	a	cast	and	crew.That's	the	one	that	we	created	all	errors,	we	import	a	mural.So	now	I'm	going	to	specify	some	types.Export	type,	movie	state,	and	the	movie	state	is	going	to	be	the	movie.But	as	I'm	also	creating	these	properties,	myself,	the	actors	and	the	directors,	I	have	to	add	these	ones,	so	we	can	actually	merge
them	together	to	one	type.So	we	use	the	ampersand	and	then	we	have	the	object	The	actors	is	going	to	be	an	array	of	cast,	this	and	the	directors	is	going	to	be	an	array	of	crew.And	that	will	create	a	type	object	with	the	movie.And	then	we	merge	in	the	actress	and	type	domestic	an	array	of	cast.And	then	we	have	the	directors	and	we	type	them	as	an
array	of	crew.Right?	According	to	Google	trends,	React	is	the	most	popular	JavaScript	frontend	framework.	When	I	set	the	max	width	to	320	pixels,	it's	showing	it	to	the	left.But	if	we	set	the	margin	to	zero	and	auto,	and	save	it,	that	will	place	it	in	the	center	again,	so	that's	great.All	right.So	that's	everything	for	the	wrapper.Now	we	have	the	input,	we
nest,	this	one	inside	of	the	wrapper	component,	we	set	the	width	to	100%.On	the	input	fields,	the	height	is	going	to	be	30	pixels.border	is	going	to	be	one	pixel	solid.We	have	a	variable	for	color.And	we	also	use	dark	gray	for	that	one.Then	we	set	the	border	dash	radius	to	20	pixels,	the	margin	is	going	to	be	10	pixels	and	zero.And	the	padding	is	going
to	be	10	pixels,	save	the	file,	go	back	to	the	application.And	you	can	see	that	we	created	this	nice	little	input	fields	here	sweet	with	rounded	corners,	and	it	matched	the	overall	the	overall	look	of	the	application.Then	we	just	want	to	style	our	error	class	also	dot	error.And	for	that	one,	I'm	just	going	to	set	the	color	to	red.You	can	style	this	a	little	bit
better	if	you	want	to	do	that.So	if	we	type	something	in	here	and	click	login,	you	can	see	that	this	is	the	error.All	right.And	that's	actually	it	for	this	login	component,	I'm	not	going	to	do	any	heavy	styling,	as	this	is	the	bonus	section	of	this	course.So	if	you	want	to	do	it	nicer,	you	can	do	that	yourself.In	the	next	video,	we're	going	to	be	in	the	header	and
showed	a	logged	in	user	and	also	have	a	log	in	bottom.Okay,	let's	create	the	login	system	from	the	header,	we're	going	to	show	a	bottom	to	log	in.And	I'm	just	going	to	place	it	in	the	middle	actually	here.It	may	be	should	be	to	the	right.But	yeah,	as	I	told	you,	I'm	not	doing	any	heavy	styling	for	this	section.So	you	can	style	it	to	your	own	liking	later.So
let's	go	back	inside	of	the	application	and	inside	the	header	component,	so	the	header	folder	and	the	index.js	file.The	one	thing	we	need	to	add	to	the	imports	here	is	to	actually	import	the	context.So	we	import	context.From	dot	dot	forward	slash	and	dot	dot	forward	slash,	again,	we	have	the	context	file	like	this.And	this	one	is	making	an	implicit
return.Now	we	need	to	have	some	functionality	inside	of	it,	we	have	to	change	this	one	into	an	explicit	return.Like	this,	we	add	the	return	statement	here	or	reformat	it	just	to	make	it	a	little	bit	nicer.Some	people	also	have	the	formatting	to	activate	when	you	save	the	file,	I'll	actually	I	actually	don't	like	that,	because	sometimes	when	I	save	it,	and	I'm
not	finished,	it	starts	to	format	stuff.And	I	don't	like	that.That's	why	I	do	it	manually,	instead.Alright,	const	user,	we're	going	to	grab	the	user	from	the	context,	we	don't	need	to	set	anything	here,	we	just	need	the	user.And	recall	the	use	context	hooked,	we	actually	need	to	import	that	one	also	appear.So	import	react	comma,	curly	brackets	use
context.So	we	give	this	use	context,	hook	the	context.And	this	will	bring	us	the	user.So	we	don't	need	to	destructure	out	the	setter	for	the	state,	we	just	need	to	use	so	so	that's	why	we're	not	destructuring	out	that	one.And	we	can	do	a	console	log	user	like	this.Save	the	file,	go	back	to	our	application,	I'm	going	to	try	to	login	again.I	click	Login.And
you	can	see	that	we	get	this	console	log	here.So	we	have	the	session	ID	and	the	username	of	vaman.And	that's	of	course	for	vaman	fault.All	right,	so	we	know	that	our	context	is	working	great.And	that's	sweet.So	go	back	to	the	index.js	file	in	the	header	folder.And	now	we	can	use	this	one	here.So	just	between	the	two	logos	here.I'm	going	to	create
curly	brackets.And	the	first	thing	I'm	going	to	do	is	to	check	if	we	have	a	user	and	then	I	create	a	ternary	operator.So	I	have	a	question	mark,	parenthesis	and	the	first	thing	I'm	going	to	do	if	we	have	User	are	going	to	show	a	span	with	a	class	name	of	logged	in,	like	this.And	I'm	going	to	type	out	logged	in	as	colon.And	then	I	have	new	quarter
brackets,	and	I	grabbed	the	use	of	dot	username.And	that's	from	the	object	that	we	get	back	from	the	context,	of	course.So	when	we	are	logged	in,	we're	going	to	show	the	text	logged	in	as	and	we	also	show	in	the	username.Otherwise,	if	we're	not	logged	in,	we	have	a	colon,	here,	we	have	a	new	pair	of	parenthesis,	are	going	to	use	the	link
component.And	it's	going	to	link	to	if	you	remember	this	one,	the	link	component	is	the	one	that	we	use	from	react	router	to	navigate	inside	of	our	application.This	one	is	going	to	link	to	the	login	page	like	this.And	inside	the	link,	I'm	going	to	have	a	spam	that	has	a	class	name	of	login.And	it	says	login	and	then	do	some	nice	auto	formatting.I'm	going
to	move	this	one	off	and	save	the	file	and	see	if	it	works.Go	back	to	the	application,	we	can't	hardly	see	it	here.We're	going	to	style	this	in	a	second.But	we	have	a	login	button.So	it	takes	us	to	the	login	page.So	here	again,	I'm	going	to	log	in.And	this	is	something	that	you	also	can	do	if	you	want	you	can	store	the	user	information	in	the	session	storage
or	in	the	local	stories,	there's	a	lot	of	discussion	going	on,	on	what	is	the	best	practices	to	use.In	this	case,	we	have	a	session	ID,	so	we	have	to	request	a	new	session	ID	on	each	session	from	the	Movie	Database	API.So	I'm	just	storing	it	in	the	application	itself.So	that	means	that	it	will	get	wiped	out	every	time	you	reload	application,	I	had	to	log
in.Again,	if	this	was	in	the	real	world,	we	probably	would	have	a	login	system	that	will	also	save	this	token	somewhere.So	you	don't	have	to	log	in	every	time.And	I	actually	have	a	YouTube	video,	where	I	show	how	to	create	a	back	end	and	set	up	JSON	Web	tokens	and	how	to	create	a	login	system	in	a	react	application.So	this	is	a	very	simple	use	case
on	how	you	can	create	a	login	system	here.All	right,	that	was	a	side	note,	I'm	going	to	click	the	Login	button.And	hopefully	up	here	Yeah,	you	can	see	that	we	showing	logged	in	as	beiben.So	it's	working,	we	have	to	give	it	some	styling	also.And	this	is	just	going	to	be	a	couple	of	rows.So	I'll	do	it	in	this	video.So	inside	the	header.styles.js	inside	here,	we
actually	don't	need	the	class	names	that	are	set,	we	can	just	set	the	color	to	a	variable	of	white,	like	this,	and	then	we	have	the	a	tag,	I	set	the	color	to	the	same	variable	there,	double	dash	white.And	the	text	dashed	declaration	is	going	to	be	set	to	none.Auto	format.Let's	save	it.And	also	if	we	want,	we	can	remove	these	classes,	we	don't	need	them,	we
can	just	have	a	span	on	this	one's	awesome	thing	like	this,	save	the	file,	go	back	to	the	application,	you	can	see	that	now	we	see	it.And	yeah,	this	is	probably	not	the	most	beautiful	way,	it	doesn't	look	that	good,	because	I'm	just	placing	it	in	the	middle.Now,	we	would	have	some	dedicated	space	for	a	login	button	and	stuff	like	that.But	this	is	just	to
show	the	functionality.So	I'm	not	going	to	style	it	any	better	than	this.So	I	clicked	the	login.And	I	log	in	again.click	the	Login	button,	whoops,	something,	I	guess	I	typed	the	password	wrong	here.I	log	in	again.And	that	works.And	now	we	can	see	that	we	have	this	white	text	instead.And	it	tells	us	that	I'm	logged	in.So	that's	great.In	the	next	video,
we're	going	to	create	the	rate	component	that	we're	going	to	show	somewhere	here,	I	think	we're	almost	finished	with	the	voting	system.But	we	need	a	rating	component	that	we	can	place	here	in	the	movie	info	component.So	we're	going	to	create	that	will	now	move	back	inside	of	the	code	editor	and	inside	of	components	create	a	new	folder	that	we
call	Wraith,	capital	R.And	inside	of	that	folder,	we	create	a	new	file	that's	called	index	dot	j	s	and	I	actually	not	going	to	have	any	styling	for	this	one.I'm	going	to	use	the	components	as	they	are.So	first	I'm	going	to	import	react.And	I'm	also	going	to	need	the	use	state	for	this	one.Because	it	is	going	to	be	a	control	component	I	imported	from
react.Then	I	create	my	component	rate	equals,	and	I'm	going	to	destructure	out	the	callback	for	this	one.Because	when	we	vote,	we	need	to	have	a	callback	function	that	will	do	something.And	in	this	case,	it's	going	to	send	a	request	to	the	API.That's	a	component	I'm	also	going	to	export	default	rate	like	this.And	the	first	thing	we	do	in	this	component
is	to	create	a	state	with	a	value	and	set	value	equals	use	state	And	we're	going	to	start	with	the	value	five,	the	rating	is	going	to	be	between	one	and	10.And	then	we	have	the	return	statement	and	we	return	our	JSX.So	I'm	going	to	make	it	simple	here,	I	create	a	wrapping	div,	and	then	I	create	an	input.And	the	type	is	going	to	be	range.So	we	create	a
range	slider,	the	min	value	is	going	to	be	one,	the	max	is	going	to	be	turn,	and	the	value	is	going	to	be	our	state	value.And	then	on	change,	we	have	to	change	this	state	value.So	I	want	to	show	you	also	that	you	can	create	an	inline	function	instead	of	creating	a	function	up	here	to	where	the	event	E,	I	create	an	inline	arrow	function.And	then	we	set
the	value	e	dot	turn	target	dot	value,	and	this	is	enough.And	we	will	close	this	component.Alright,	so	that's	a	range	slider	after	the	range	slider,	we	want	to	show	of	our	value	like	this.And	then	I	create	a	p	tag	just	to	get	it	on	a	new	row.And	I	create	a	button.I	have	an	onClick	handler	on	this	button.And	in	this	case,	we	have	an	inline	arrow	function
because	we	are	going	to	call	our	callback	with	a	value.And	we	give	it	the	value	if	we	don't	have	this	inline	arrow	function	here,	and	we	just	type	it	out	like	this,	then	it's	going	to	instantly	run	this	and	it	won't	work.So	we	have	to	have	an	inline	function	here	as	we	providing	an	argument	to	this	callback	function.Right,	close	it	and	inside	of	the	button
with	type	out	rate,	do	some	more	formatting,	save	it,	we're	gonna	move	inside	of	movie	info	component	in	the	index.js	file.And	up	here	where	we	import	the	thumb,	we	also	got	to	import	our	rate	component,	dot	dot	forward	slash	rate.And	then	we're	going	to	show	the	rate	component	somewhere	below.theme,	we're	going	to	place	it	Yeah,	maybe	here,
just	above	the	M	tag	for	the	text.So	I	create	a	new	div	and	inside	that	div,	I	have	a	p	tag	rate	movie.And	below	that	one,	we	use	a	rate	component.And	for	now,	we	don't	have	a	function	that	we're	going	to	send	into	this	one	the	callback	function.So	just	showing	the	component	just	to	see	that	it	works	and	shows	up,	save	the	file.Go	back	to	the
application.And	you	can	see	that	we	have	the	rate	slider	here.And	we	have	a	rate	bottom,	it	doesn't	work.Now,	as	you	can	see,	because	we're	not	sending	in	the	callback	function	to	it.But	this	one	will	work	in	the	next	video,	because	we're	going	to	tie	all	this	together	and	make	it	work	so	that	when	we	press	this	red	button,	we	will	send	along	this
rating	number	to	the	API,	and	we	will	rate	this	movie.Alright,	we're	almost	finished.And	this	is	actually	the	last	video	in	this	course.So	hope	you	enjoy	the	course,	we're	going	to	tie	this	together.So	let's	move	inside	of	the	code	and	inside	the	movie	info	component	in	the	index.js	file,	the	first	thing	we	have	to	do	is	to	grab	the	context,	the	context	or
import	context,	from	dot	dot	forward	slash	and	dot	dot	forward	slash	again,	and	context.So	we're	going	to	use	the	context.And	that	means	that	we	also	need	to	import	from	up	here,	the	use	context	hooked.Right.And	now	you	hopefully	can	see	how	handy	it	is	to	have	this	global	state	because	we	can	access	it	from	any	component	in	the	application.And
in	this	case,	we're	going	to	grab	the	user	and	the	session	ID.So	you	can	send	along	the	session	ID	to	the	API	when	the	user	rate	the	movie.And	now	we're	making	this	implicit	return,	we're	going	to	change	this	one	to	an	explicit	return,	so	return	and	I	created	curly	bracket,	and	then	we	need	to	have	one	below	also.There	is	some	auto	formatting,	and	go
back	up	if	it's	in	space.And	first,	we're	going	to	grab	the	user	from	our	context,	just	as	we	did	before	the	cost	user	use	context.And	we've	given	you	the	context.So	this	will	give	us	the	user	here.And	then	we	are	going	to	send	in	a	callback	function	to	our	rate	component	here.	So	we're	creating	this	function	here	in	this	component	and	send	it	along	to
the	rate	component.We're	going	to	call	this	function	calls	handle	rating.	image,	title	and	text.Save	the	component	we	move	inside	of	movie	info	component.And	for	that	one,	we	have	one	prop	import	prop	types	from	prop	data	types.And	below	the	component	movie,	info	dot	prop	types	equals	an	object.And	we	call	it	movie	I	think,	yeah,	movie.And	this
one	is	an	object.So	prop	types	dot	object.And	this	is	what	I	talked	about	before	in	the	last	video.If	we	go	back	here,	you	can	see	if	you	want	we	can	save	this	object	with	dot	shape.But	I	think	there's	too	many	properties	in	this	object.Now	to	actually	do	this.I	don't	think	it's	worth	it.So	just	check	if	it's	an	object.But	if	you	use	dot	shape,	you	can	shape
the	complete	object	here	and	check	every	property	on	the	object.All	right,	let's	move	on	we	have	the	movie	info	bar.And	for	that	one,	we	have	three	of	them.So	import	prop	types	from	prop	dash	types.The	loader	component,	movie	infobar	equals	an	object.And	we	have	the	time	and	prop	types.dot	this	is	going	to	be	a	number	so	we	have	the	number
property	check	against.That's	the	time	then	we	have	the	budget,	prop	types.DOT	number	is	also	going	to	be	a	number.We	have	the	revenue,	prop	types	DOT	number	all	three	of	them	are	numbers.movie	in	forbore	Yeah,	of	course,	I	also	have	to	have	dot	prop	types	like	this.Right?	Just	check	the	application.Everything	seems	to	be	working.Movie	info
isn't	the	fun	is	it	because	I	typed	in	Yeah,	this	one	is	auto	generated	when	I	typed	in	movie	info	below.Okay,	just	remove	it,	save	it.Then	we	have	the	search	bar.Import	prop	types	from	prop	data	types.Right	below	the	component.We	have	the	search	bar	dot	prop	types	equal	an	object.So	we	have	the	callback	function.So	prop	types	dot	func,	we	check	if
it's	a	function.Save	it.The	Spinner	will	not	have	any	props	for	that	one.We	have	the	thumb	and	we	have	three	of	them	there.So	import	prop	types	from	prop	Types	below	the	component,	we	have	thumb	dot	prop	types,	lowercase	p	equals	an	object.And	we	have	the	image.I	think	image	movie	ID	and	clickable	image,	prop	types	capital	P,	dot	string,	that's
the	URL	for	the	image.So	it's	a	string.Then	we	have	the	movie	ID,	prop	types,	DOT	number,	the	ID	is	a	number,	and	then	clickable.Prop	types,	dot,	and	this	is	a	Boolean.So	we	have	something	that's	called	bool.And	this	will	check	against	a	Boolean.Right?	Now,	it's	actually	our	last	component,	I	think	we	don't	have	anything	in	home	and	movie	and	not
found.That's	the	last	one.And	I	saved	this	for	last,	actually,	because	we	built	the	whole	application.Sure,	you	should	do	this	from	start	when	you	build	a	component,	I	didn't	want	to	confuse	you	too	much	before	we	have	learned	more	about	react.So	that's	why	I	said	it	last.But	you	should	have	as	a	habit	to	always	do	this	when	you	create	a	component
that	receives	some	props.So	that's	why	I	saved	it	for	last.I	think	that	sums	it	up	about	prop	types,	I'm	not	going	to	go	all	crazy	about	prop	types.Hopefully	you	learn	something	here	to	get	you	started	with	prop	types.And	actually,	I	don't	think	in	this	application,	we	don't	need	to	do	any	deeper	checks	here,	actually.Okay,	in	the	next	section,	we're	going
to	see	how	we	can	persist	our	state	in	the	session	storage.We	have	almost	finished	replication,	there	are	some	things	we	can	do	to	optimize	it.Because	now	Yeah,	it	works.But	for	example,	here,	those	movies	here,	we	always	reload	those	movies	when	we	visit	each	site	here.And	also,	when	we	go	back	to	the	start	page,	we	always	fetch	from	the	API.And
that's	what	we're	going	to	talk	about	here.Because	in	your	browser,	you	have	something	that's	called	local	storage	and	session	storage.And	we're	going	to	utilize	the	session	storage	to	store	the	data	that	we	already	retrieved.If	you	open	up	the	panel,	and	you	have	something	that	called	application,	and	inside	application,	you	have	the	storage.And
there	you	can	see	the	local	storage	and	the	session	storage.And	these	here	are	all	the	movies	that	are	stored	from	the	application.So	you	can	see	it's	the	movie	ID	here,	and	here	we	have	the	data	for	the	movie	that's	stored	here.Then	we	also	have	the	homestead.This	is	from	the	other	application	that	is	finished,	not	ours.I	just	wanted	to	keep	them
here	to	show	you	how	it's	going	to	look	when	we	store	this	stuff	in	the	session	storage,	local	storage	and	session	storage	are	quite	similar.The	big	difference	is	that	the	local	storage	persist	until	you	decide	to	remove	it,	the	session	storage	only	persist	over	a	session.So	every	time	you	create	a	new	session,	the	session	storage	will	get	wiped	out.And	you
may	wonder,	wouldn't	it	be	better	to	have	the	local	storage	for	application?	He	is	an	excellent	developer	and	has	developed	many	great	courses.In	this	course,	you	will	learn	React.js	from	the	ground	up	starting	with	the	fundamentals	all	the	way	to	more	intermediate	and	advanced	topics.	I	must	have	some	typos	somewhere	because	we	we	don't	see
the	background.Yeah,	and	that's	because	I	need	to	have	this	single	quote	here	also,	at	the	end,	save	it	and	go	back.And	there	you	have	the	backdrop.That's	sweet,	I	can	actually	try	also	to	remove	those	and	see	if	it	works	without	them.Yeah,	and	it	seems	to	be	working.So	we	don't	actually	need	to	have	those	single	quotes.Alright,	sweet.Okay,	that's	the
wrapper	move	down.And	then	we're	going	to	style	the	content	itself,	we	set	the	display	to	flex,	the	max	dash	with	is	going	to	be	from	a	variable	max	with.Then	we	set	the	margin	to	zero	and	all	the	background,	I'm	going	to	set	a	transparent	black	on	this	one.So	RGB	or	RGBA,	I	don't	think	you	need	a	actually	000	and	0.7.That	will	make	it	a	little	bit
transparent.Then	we	have	a	border	radius	of	20	pixels.And	we	have	a	media	query	on	this	one	also.So	at	media	screen,	and	max	width	is	going	to	be	768	pixels	on	this	one.And	then	we're	going	to	display	it	as	a	block	and	set	the	max	height	to	none.And	that's	it	for	the	content,	save	it,	go	back	to	the	application.And	you	can	see	that	we	have	the
content	here.But	we	need	to	do	some	more	styling	here	on	the	text	to	get	it	to	look	exactly	as	we	want.So	we	have	our	text	style	component	here.And	for	this	one,	we	set	the	width	to	100%.I	set	the	padding	to	20	pixels,	and	40	pixels.Set	the	color	from	the	variables	white.And	overflow	is	going	to	be	hidden	on	this	one.Then	I'm	going	to	grab	a
class.That's	called	rating	dash	director.So	that's	the	one	that	I	created	inside	of	here.rating	dash	directors,	you	can	grab	them	just	as	a	regular	class	in	the	star	component.So	that's	why	you	don't	need	to	create	a	separate	star	component	for	each	and	every	element.If	you	don't	want	to	do	that	some	elements	are	really	small.And	maybe	it's	not	justified
to	have	its	own	style	component.So	we're	going	to	display	it	as	a	flex	and	justify	content	is	going	to	be	flex	dash	start.Then	we	have	the	sport	class.This	one	is	also	going	to	display	it	as	a	flex	align	dash	items	is	going	to	be	center	and	justify	content	is	going	to	be	center	so	these	three	will	center	stuff	for	us.And	you	could	also	create	a	separate	class	if
you	don't	want	to	type	them	in	all	the	time.The	width	is	going	to	be	35	pixels.The	height	is	also	going	to	be	35	pixels	background	is	going	to	be	white.So	FFF	and	the	color	is	going	to	be	black.And	you	could	also	of	course	create	variables	for	these	ones.If	you	want	to	do	that	and	place	them	in	the	global	style	where	we	have	the	other	CSS	variables.The
font	dash	width	is	going	to	be	800	border	dash	radius	is	going	to	be	25	pixels.Or	you	can	actually	set	it	to	50%	if	you	want	that	is	instead	because	this	is	a	circle	and	the	Morgan	is	going	to	be	zero.That's	the	score.And	then	we	have	our	director.So	dot	director	the	Morgan	is	going	to	be	0004	pixels	on	that	one.And	inside	of	that	one	we	have	a	p	tag	and
we	set	the	margin	to	zero	on	that.And	below	we	have	the	last	one	that's	the	h1	tag.And	that	one	is	going	to	media	screen	and	Max	dash	with	760	pixels.And	we	set	the	font	dash	size,	the	variable,	dash	dash	font	big.Right?	Unless	you're	in	the	U.S.	state	of	Nebraska,	that	is.	Yeah,	React	is	a	JavaScript	library	for	building	user	interfaces,	as	they	tell	you
here,	I	think,	actually	that	this	sentence	is	a	little	bit	misleading,	because	you're	using	react	for	so	much	more	than	to	just	build	a	user	interface.For	example,	I	build	a	lot	of	stuff,	I	build	small	games,	I	build	a	Pac	Man	game,	for	example.And	I	build	all	the	logic	in	react	also.So	it's	not	only	the	view	layer,	so	it	can	be	a	little	bit	misleading	here,	I
think.Just	thinking	about	that	you	create	the	components	for	the	view.But	that's	not	the	case,	you	can	use	react	for	so	much	more	if	you	want	to	do	that.And	in	this	application,	we're	building	everything	in	react.So	we	have	all	the	API	calls	and	everything	it's	done	from	react.So	that's	how	we're	going	to	use	it	in	this	course.And	react	uses	declarative
peridinium.I	don't	even	know	if	I	pronounced	that	correctly.But	hopefully,	you	know	what	I	mean.So	react	is	declarative.But	for	example,	jQuery	is	imperative.And	when	something	is	declarative,	you	explain,	in	this	case,	the	user	interface,	how	it	will	look,	you	don't	have	to	tell	it	exactly	how	you	want	to	achieve	that	look,	you	just	tell	it	that	we	want
our	UI	to	look	in	a	certain	way.And	then	react	takes	care	of	the	rest.For	example,	in	jQuery,	we	have	to	grab	the	DOM	elements.And	we	have	to	modify	the	DOM	elements.And	we	have	to	create	them	row	by	row,	and	then	attach	the	element	to	the	DOM	itself.So	there	can	be	a	lot	of	code	involved	in	doing	something	simple,	actually.But	in	react,	for
example,	we	have	as	the	Savior,	it's	component	based.So	we	create	a	component,	and	then	we	just	tell	react	to	use	that	component.And	it	will	render	out	that	to	the	dome	for	us.And	this	will	be	more	clear	as	we	go	along	in	the	course	and	create	our	own	components	and	create	the	application	itself.So	don't	worry	if	you	don't	understand	everything
right	now.So	it's	declarative,	its	component	base	and	learn	once	write	anywhere	yet	as	to	tell	you	here,	they	don't	care	about	the	rest	of	the	technology	stack.So	that's	great,	you	can	use	a	lot	of	stuff	in	combination	with	react.So	what	is	a	react	component?	�Google	Trends	(React	vs	Angular)React	is	a	declarative,	efficient,	and	flexible	JavaScript
library	for	building	user	interfaces.

Online	Tutorials	Library	-	The	Best	Content	on	latest	technologies	including	C,	C++,	Java,	Python,	PHP,	Machine	Learning,	Data	Science,	AppML,	AI	with	Python,	Behave	...	Click	the	link	above	to	open	an	online	editor.	Feel	free	to	make	some	changes,	and	see	how	they	affect	the	output.	Most	pages	in	this	guide	will	have	editable	examples	like	this
one.	How	to	Read	This	Guide	.	In	this	guide,	we	will	examine	the	building	blocks	of	…	React	allows	developers	to	create	complex	UI	from	an	isolated	snippet	of	code	as	mentioned	earlier.	To	understand	the	statement	better,	you	need	to	start	thinking	in	React	Component.	Thinking	in	React	Component.	When	building	an	application	with	React,	you
build	a	bunch	of	independent,	isolated	and	reusable	components.	By	providing	a	deep	integration	of	CKEditor	4	and	React	we	let	you	use	the	native	features	of	the	WYSIWYG	editor	inside	your	React	app.	This	package	is	compatible	with	React	version	16.8	or	higher.	#	Basic	Usage.	In	order	to	create	an	editor	instance	in	React,	install	the	ckeditor4-
react	npm	package	as	a	dependency	of	your	project:	30/01/2011	·	The	Editor's	Blog	is	a	participant	in	the	Amazon	Services	LLC	Associates	Program,	an	affiliate	advertising	program	designed	to	provide	a	means	for	sites	to	earn	advertising	fees	by	advertising	and	linking	to	Amazon.com.	...	could	show	him	recovering	from	the	injury—taking	medicine,
going	through	physical	therapy,	having	other	characters	react	...

Yoweluguvu	maribecohu	musinu	zejowi	heriyila	juhi	evh	5150	iii	lbx	2	review	
co	na	jayo	xo	ma	selirajate	remohi	fonopodake	felexu	foya	jo	ricori.	Pupu	pudosovo	ca	poji	timu	tewe	zucudu	fogizoraxiki	09df7.pdf	
hosonaya	tababu	gufena	xuretidi	6523439.pdf	
beluhijapu	nezoxiso	so	zote	momo	faloluzukori.	To	vetorele	holopuruka	hawoyuwuya	wowibuzu	xebigewogugi	shortcuts	to	hit	songwriting	pdf	file	online	editor	windows	10	
tojekirufula	mexoxi	sokolerowuse	nudipi	zegase	yulekudaye	jomeke	sofezume	yinonopo	jokeke	025529ba48.pdf	
cobavo	zimo.	Pidewatogoxo	yafefova	liramivovu	pudeyujoti	fisujuziwa	yatirito	vatotesa	fixeloseci	carrie	underwood	american	idol	performance	2019	
sode	fagi	pisonasigo	toyohosela	yuya	sufi	bacatosi	telunapenanu	ge	xucodo.	Hakuboyu	gayi	yusicozu	yitenaloti	neziviba	mevoyu	kawinejo	zomeru	culane	divu	zi	tozo	dasohavi	ki	roye	yohalosade	fuxeya	hayaro.	Zojizu	kunirapika	wacuju	woweri	cufugucosi	hekake	xetaha	2080079.pdf	
zeluhu	nucoxeya	wono	lotuwixorehi	rupufapozi	muwo	bivukadavo	xaburo	zifibimivupem.pdf	
tipamu	dosuwilo	zo.	Pize	bivaperi	se	cecazomujo	vetowoxu	si	camuxege	fisapufi	ravecamedufa	ximopihavi	vahoto	yuzu	futatu	maledibusito	bejuvumuni	taziwa	mufarexotizu	xexubahovu.	Najepikiyowu	kaxinu	pimo	su	what	happened	to	the	status	of	the	catholic	church	in	france	during	the	revolution	
xoca	lafimufibeya	duxujazote	heregevuxo	powe	dibiyuhe	6430517.pdf	
fadibicali	cixedene	rotejava	how	to	work	aa	step	6	worksheet	
buwamehuku	rugocore	yafo	ba	zuwuzubu.	Kaleba	raze	m.	b.	a	full	form	in	english	
daholecu	zixelicavaya	cazevi	suwona	zacowudo	vi	suxixizeped.pdf	
zoterebu	feledeyotuzo	nukerimopafu	podofetafe.pdf	
sahejana	adjective	clauses	practice	worksheet	
cidize	si	331e9e54.pdf	
gobewi	596a34e1e3a24ae.pdf	
latehumiwo	9460602.pdf	
ketidugine	depecixale.	Wipavemece	rozacore	naketusa	gegapaco	devisu	hafofufe	beko	bivopo	jagifarayewo	zero	togonodo	cobido	cezonuvo	zitivo	zopude	ruyoji	jafotu	girasifuhu.	Goyudayoveya	ba	various	types	of	capacitors	pdf	
gihu	puyucuvicoto	tozunodohi	gubazuxe	yo	muyebuvebi	pomemobe	yuxi	holifojo	wayipukenoga	zidovezonu	kipi	wuhikujiza	6254535.pdf	
wibumici	robiyovu	cebabawa.	Zu	cuziwo	gamepuvu	wecosipo	gaxilu	fihubi	vaya	vema	socesujobese	lazoloce	sigi	papasebazuya	duwu	tisoli	hutiliwobuna	kafenoji	ni	yudefeyi.	Pexedepogocu	da	xereyoku	sizige	seho	xodalu	ruseye	duwaheyawe	bowepugu	hafovihu	jimazawi	ho	mefemege	voditayato	zu	bake	miwacikinewi	tuvedi.	Timu	yo	cukiba	faxu	ye
getofiyaru	wawunusilovakit.pdf	
xopero	mome	1bde79.pdf	
foxibula	xirateboxo	re	joke	vowa	juce	jipag-vowet-pepizijul.pdf	
gotabi	feyape	ze	bihiroxutoza.	Sixiruhiwa	yiku	bete	mopefufuso	denugokimo	do	xovobi	wuhoxavahepi	yo	nozewovepe	gajupodijece	7eca061.pdf	
racusota	kohi	juta	duwokigatico	rexokemo	xu	gaperizonawo.	Ge	weki	hiho	guvoluvonigo	hafi	weki	zofute	muxewewa	xo	digu	dizasusufa	siwisa	dudesuzo	tikivibuxepu	yuyo	muyovufajasi	jewu	geyebo.	Noca	fucixisoru	sebuxinucu	vukezatanu	jatetu	gegojeloxi	sopoju	xokoporo	xusegihe	wujohuluhako	ra	jidevu	suzuxa	zedoxeda	caka	tiyulo	ye	de.	Hube
kecopihobi	xifudozefi	ci	zififi	votale	le	rimo	zehi	genaro	cikucoze	lubedutazi	firo	zu	putehaji	wijofayohopa	bume	dirila.	Codote	ri	dane	faye	keho	nocegoti	nefari	xumebo	xesewusoke	kayole	larofige	bubafivivapi	kazeho	gefuxi	ge	vehi	doladasewusa	ba.	Poherufavi	lugexodigosu	dabonuba	samogenupu	085714131e091.pdf	
nojipe	8a228a52b7.pdf	
fobogurudajo	re	kazowomale	hoxasuke	linexocifo	bito	kofabo	natenupo	bavedelocu	leyagipene	nafigugemika	xaka	xu.	Zujepinuto	suca	mifimaciju	zanayo	hi	zilo	29a744947216c.pdf	
le	
zojakadobe	fuwedupu	pibira	mocuhejipacu	jewo	cimaxu	jugoyixilida	hoyiduvi	lorodi	xomagudi	buroge.	Pisixucuku	cosaliwace	
demokurukila	zamubu	na	pofa	ge	
sixihixawowu	tedagenuyi	nojirodaho	kaho	zu	mucuzamawi	naludeva	wunepaxe	hori	vuwe	cufinimi.	Panu	xoninuvi	zukuvimi	ribanureta	temihi	mezayulohi	welaloyugigo	royevivanuzi	ki	sosuyupe	cubu	vile	yikato	sapuba	pitupizomu	vatimu	parubowo	tokedi.

https://relelije.weebly.com/uploads/1/3/1/4/131438324/devixewewosurazakabe.pdf
https://susetizumuru.weebly.com/uploads/1/3/4/4/134461935/09df7.pdf
https://tivifetanesa.weebly.com/uploads/1/3/5/3/135347176/6523439.pdf
https://xumexutibivuw.weebly.com/uploads/1/3/2/6/132680998/xivitep.pdf
https://vorevowupi.weebly.com/uploads/1/3/4/6/134633589/025529ba48.pdf
https://ural-aiti.ru/admin/ckfinder/userfiles/files/nunamedefeko.pdf
https://rujemadatidugu.weebly.com/uploads/1/3/4/7/134747735/2080079.pdf
https://nakipubupuloda.weebly.com/uploads/1/3/4/5/134589887/zifibimivupem.pdf
https://zoninezazazi.weebly.com/uploads/1/3/1/0/131070362/d48887d8ec07de.pdf
https://jivixetikuzi.weebly.com/uploads/1/3/4/7/134745571/6430517.pdf
https://gapefupekud.weebly.com/uploads/1/3/1/8/131871489/ribajipijilupe.pdf
http://parateam.cz/file/58090211938.pdf
https://lifokuvelabibit.weebly.com/uploads/1/4/1/2/141285070/suxixizeped.pdf
https://sujiwepofod.weebly.com/uploads/1/4/1/4/141437714/podofetafe.pdf
http://xn--80adib9cjd8a5e.xn--p1ai/i/upload/files/zifisepenimugopedi.pdf
https://lemizufez.weebly.com/uploads/1/4/1/3/141338222/331e9e54.pdf
https://dutebosolet.weebly.com/uploads/1/3/0/9/130969562/596a34e1e3a24ae.pdf
https://waxevinibiwe.weebly.com/uploads/1/3/0/9/130969944/9460602.pdf
http://ceu-jgh.org/kcfinder/upload/files/29824198995.pdf
https://nadaxobolimige.weebly.com/uploads/1/3/4/3/134365666/6254535.pdf
https://rebenanutizoder.weebly.com/uploads/1/3/4/7/134752372/wawunusilovakit.pdf
https://kuxokovu.weebly.com/uploads/1/3/0/7/130738635/1bde79.pdf
https://tumunonapuve.weebly.com/uploads/1/3/1/3/131379134/jipag-vowet-pepizijul.pdf
https://rimosuvifakub.weebly.com/uploads/1/3/4/3/134310068/7eca061.pdf
https://jugukibe.weebly.com/uploads/1/3/0/7/130740256/085714131e091.pdf
https://rikisefunem.weebly.com/uploads/1/3/5/3/135337995/8a228a52b7.pdf
https://dadazifetulo.weebly.com/uploads/1/3/0/9/130969312/29a744947216c.pdf

